SQLite

Check-in [6c6f0de59b]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Change the hex literal processing so that only the SQL parser understands hex literals. Casting and coercing string literals into numeric values does not understand hexadecimal integers. This preserves backwards compatibility. Also: Throw an error on any hex literal that is too big to fit into 64 bits.
Downloads: Tarball | ZIP archive | SQL archive
Timelines: family | ancestors | descendants | both | hex-literal
Files: files | file ages | folders
SHA1: 6c6f0de59bf96b79c8ace8c9bfe48c7a6a306a50
User & Date: drh 2014-07-23 13:40:49
Context
2014-07-23
14:52
Remove a surplus function prototype. #ifdef code that is not used when hex integers are omitted at compile time. (check-in: a5b383e077 user: drh tags: hex-literal)
13:40
Change the hex literal processing so that only the SQL parser understands hex literals. Casting and coercing string literals into numeric values does not understand hexadecimal integers. This preserves backwards compatibility. Also: Throw an error on any hex literal that is too big to fit into 64 bits. (check-in: 6c6f0de59b user: drh tags: hex-literal)
02:07
Casting hex literals directly from string to float always results in a positive number. (check-in: 4b86ccdf4f user: drh tags: hex-literal)
Changes
Unified Diff Ignore Whitespace Patch
Changes to src/expr.c.
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087



2088

2089
2090
2091
2092
2093
2094
2095
    if( negFlag ) i = -i;
    sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
  }else{
    int c;
    i64 value;
    const char *z = pExpr->u.zToken;
    assert( z!=0 );
    c = sqlite3Atoi64(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
    if( c==0 || (c==2 && negFlag) ){
      char *zV;
      if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; }
      zV = dup8bytes(v, (char*)&value);
      sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64);
    }else{
#ifdef SQLITE_OMIT_FLOATING_POINT
      sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
#else



      codeReal(v, z, negFlag, iMem);

#endif
    }
  }
}

/*
** Clear a cache entry.







|









>
>
>
|
>







2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
    if( negFlag ) i = -i;
    sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
  }else{
    int c;
    i64 value;
    const char *z = pExpr->u.zToken;
    assert( z!=0 );
    c = sqlite3DecOrHexToI64(z, &value);
    if( c==0 || (c==2 && negFlag) ){
      char *zV;
      if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; }
      zV = dup8bytes(v, (char*)&value);
      sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64);
    }else{
#ifdef SQLITE_OMIT_FLOATING_POINT
      sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
#else
      if( sqlite3_strnicmp(z,"0x",2)==0 ){
        sqlite3ErrorMsg(pParse, "hex literal too big: %s", z);
      }else{
        codeReal(v, z, negFlag, iMem);
      }
#endif
    }
  }
}

/*
** Clear a cache entry.
Changes to src/main.c.
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
sqlite3_int64 sqlite3_uri_int64(
  const char *zFilename,    /* Filename as passed to xOpen */
  const char *zParam,       /* URI parameter sought */
  sqlite3_int64 bDflt       /* return if parameter is missing */
){
  const char *z = sqlite3_uri_parameter(zFilename, zParam);
  sqlite3_int64 v;
  if( z && sqlite3Atoi64(z, &v, sqlite3Strlen30(z), SQLITE_UTF8)==SQLITE_OK ){
    bDflt = v;
  }
  return bDflt;
}

/*
** Return the Btree pointer identified by zDbName.  Return NULL if not found.







|







3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
sqlite3_int64 sqlite3_uri_int64(
  const char *zFilename,    /* Filename as passed to xOpen */
  const char *zParam,       /* URI parameter sought */
  sqlite3_int64 bDflt       /* return if parameter is missing */
){
  const char *z = sqlite3_uri_parameter(zFilename, zParam);
  sqlite3_int64 v;
  if( z && sqlite3DecOrHexToI64(z, &v)==SQLITE_OK ){
    bDflt = v;
  }
  return bDflt;
}

/*
** Return the Btree pointer identified by zDbName.  Return NULL if not found.
Changes to src/pragma.c.
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
  **
  ** Get or set the size limit on rollback journal files.
  */
  case PragTyp_JOURNAL_SIZE_LIMIT: {
    Pager *pPager = sqlite3BtreePager(pDb->pBt);
    i64 iLimit = -2;
    if( zRight ){
      sqlite3Atoi64(zRight, &iLimit, sqlite3Strlen30(zRight), SQLITE_UTF8);
      if( iLimit<-1 ) iLimit = -1;
    }
    iLimit = sqlite3PagerJournalSizeLimit(pPager, iLimit);
    returnSingleInt(pParse, "journal_size_limit", iLimit);
    break;
  }








|







1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
  **
  ** Get or set the size limit on rollback journal files.
  */
  case PragTyp_JOURNAL_SIZE_LIMIT: {
    Pager *pPager = sqlite3BtreePager(pDb->pBt);
    i64 iLimit = -2;
    if( zRight ){
      sqlite3DecOrHexToI64(zRight, &iLimit);
      if( iLimit<-1 ) iLimit = -1;
    }
    iLimit = sqlite3PagerJournalSizeLimit(pPager, iLimit);
    returnSingleInt(pParse, "journal_size_limit", iLimit);
    break;
  }

1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
  */
  case PragTyp_MMAP_SIZE: {
    sqlite3_int64 sz;
#if SQLITE_MAX_MMAP_SIZE>0
    assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
    if( zRight ){
      int ii;
      sqlite3Atoi64(zRight, &sz, sqlite3Strlen30(zRight), SQLITE_UTF8);
      if( sz<0 ) sz = sqlite3GlobalConfig.szMmap;
      if( pId2->n==0 ) db->szMmap = sz;
      for(ii=db->nDb-1; ii>=0; ii--){
        if( db->aDb[ii].pBt && (ii==iDb || pId2->n==0) ){
          sqlite3BtreeSetMmapLimit(db->aDb[ii].pBt, sz);
        }
      }







|







1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
  */
  case PragTyp_MMAP_SIZE: {
    sqlite3_int64 sz;
#if SQLITE_MAX_MMAP_SIZE>0
    assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
    if( zRight ){
      int ii;
      sqlite3DecOrHexToI64(zRight, &sz);
      if( sz<0 ) sz = sqlite3GlobalConfig.szMmap;
      if( pId2->n==0 ) db->szMmap = sz;
      for(ii=db->nDb-1; ii>=0; ii--){
        if( db->aDb[ii].pBt && (ii==iDb || pId2->n==0) ){
          sqlite3BtreeSetMmapLimit(db->aDb[ii].pBt, sz);
        }
      }
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
  **   PRAGMA soft_heap_limit = N
  **
  ** Call sqlite3_soft_heap_limit64(N).  Return the result.  If N is omitted,
  ** use -1.
  */
  case PragTyp_SOFT_HEAP_LIMIT: {
    sqlite3_int64 N;
    if( zRight && sqlite3Atoi64(zRight, &N, 1000000, SQLITE_UTF8)==SQLITE_OK ){
      sqlite3_soft_heap_limit64(N);
    }
    returnSingleInt(pParse, "soft_heap_limit",  sqlite3_soft_heap_limit64(-1));
    break;
  }

#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)







|







2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
  **   PRAGMA soft_heap_limit = N
  **
  ** Call sqlite3_soft_heap_limit64(N).  Return the result.  If N is omitted,
  ** use -1.
  */
  case PragTyp_SOFT_HEAP_LIMIT: {
    sqlite3_int64 N;
    if( zRight && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK ){
      sqlite3_soft_heap_limit64(N);
    }
    returnSingleInt(pParse, "soft_heap_limit",  sqlite3_soft_heap_limit64(-1));
    break;
  }

#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
Changes to src/sqliteInt.h.
3327
3328
3329
3330
3331
3332
3333

3334
3335
3336

3337
3338
3339
3340
3341
3342
3343

const char *sqlite3IndexAffinityStr(Vdbe *, Index *);
void sqlite3TableAffinity(Vdbe*, Table*, int);
char sqlite3CompareAffinity(Expr *pExpr, char aff2);
int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity);
char sqlite3ExprAffinity(Expr *pExpr);
int sqlite3Atoi64(const char*, i64*, int, u8);

void sqlite3Error(sqlite3*, int, const char*,...);
void *sqlite3HexToBlob(sqlite3*, const char *z, int n);
u8 sqlite3HexToInt(int h);

int sqlite3TwoPartName(Parse *, Token *, Token *, Token **);

#if defined(SQLITE_TEST) 
const char *sqlite3ErrName(int);
#endif

const char *sqlite3ErrStr(int);







>



>







3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345

const char *sqlite3IndexAffinityStr(Vdbe *, Index *);
void sqlite3TableAffinity(Vdbe*, Table*, int);
char sqlite3CompareAffinity(Expr *pExpr, char aff2);
int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity);
char sqlite3ExprAffinity(Expr *pExpr);
int sqlite3Atoi64(const char*, i64*, int, u8);
int sqlite3DecOrHexToI64(const char*, i64*);
void sqlite3Error(sqlite3*, int, const char*,...);
void *sqlite3HexToBlob(sqlite3*, const char *z, int n);
u8 sqlite3HexToInt(int h);
int sqlite3HexToI64(const char*,i64*);
int sqlite3TwoPartName(Parse *, Token *, Token *, Token **);

#if defined(SQLITE_TEST) 
const char *sqlite3ErrName(int);
#endif

const char *sqlite3ErrStr(int);
Changes to src/util.c.
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
  register unsigned char *a, *b;
  a = (unsigned char *)zLeft;
  b = (unsigned char *)zRight;
  while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
  return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
}

/*
** Translate a single byte of Hex into an integer.
** This routine only works if h really is a valid hexadecimal
** character:  0..9a..fA..F
*/
u8 sqlite3HexToInt(int h){
  assert( (h>='0' && h<='9') ||  (h>='a' && h<='f') ||  (h>='A' && h<='F') );
#ifdef SQLITE_ASCII
  h += 9*(1&(h>>6));
#endif
#ifdef SQLITE_EBCDIC
  h += 9*(1&~(h>>4));
#endif
  return (u8)(h & 0xf);
}

/*
** The string z[] is an text representation of a real number.
** Convert this string to a double and write it into *pResult.
**
** The string z[] is length bytes in length (bytes, not characters) and
** uses the encoding enc.  The string is not necessarily zero-terminated.
**







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







251
252
253
254
255
256
257
















258
259
260
261
262
263
264
  register unsigned char *a, *b;
  a = (unsigned char *)zLeft;
  b = (unsigned char *)zRight;
  while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
  return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
}

















/*
** The string z[] is an text representation of a real number.
** Convert this string to a double and write it into *pResult.
**
** The string z[] is length bytes in length (bytes, not characters) and
** uses the encoding enc.  The string is not necessarily zero-terminated.
**
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
  /* get sign of significand */
  if( *z=='-' ){
    sign = -1;
    z+=incr;
  }else if( *z=='+' ){
    z+=incr;
  }
#ifndef SQLITE_OMIT_HEX_INTEGER
  else if( *z=='0'
        && &z[incr*2]<zEnd
        && (z[incr]=='x' || z[incr]=='X')
        && sqlite3Isxdigit(z[incr*2])
  ){
    result = 0.0;
    for(z += incr*2; z<zEnd && sqlite3Isxdigit(z[0]); z += incr){
      result = result*16.0 + sqlite3HexToInt(z[0]);
    }
    *pResult = result;
    return z>=zEnd && nonNum==0;
  }
#endif

  /* skip leading zeroes */
  while( z<zEnd && z[0]=='0' ) z+=incr, nDigits++;

  /* copy max significant digits to significand */
  while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
    s = s*10 + (*z - '0');







<
<
<
<
<
<
<
<
<
<
<
<
<
<







314
315
316
317
318
319
320














321
322
323
324
325
326
327
  /* get sign of significand */
  if( *z=='-' ){
    sign = -1;
    z+=incr;
  }else if( *z=='+' ){
    z+=incr;
  }















  /* skip leading zeroes */
  while( z<zEnd && z[0]=='0' ) z+=incr, nDigits++;

  /* copy max significant digits to significand */
  while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
    s = s*10 + (*z - '0');
502
503
504
505
506
507
508
509

510
511
512
513
514
515
516
    testcase( c==0 );
    testcase( c==(+1) );
  }
  return c;
}

/*
** Convert zNum to a 64-bit signed integer.

**
** If the zNum value is representable as a 64-bit twos-complement 
** integer, then write that value into *pNum and return 0.
**
** If zNum is exactly 9223372036854775808, return 2.  This special
** case is broken out because while 9223372036854775808 cannot be a 
** signed 64-bit integer, its negative -9223372036854775808 can be.







|
>







472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
    testcase( c==0 );
    testcase( c==(+1) );
  }
  return c;
}

/*
** Convert zNum to a 64-bit signed integer.  zNum must be decimal. This
** routine does *not* accept hexadecimal notation.
**
** If the zNum value is representable as a 64-bit twos-complement 
** integer, then write that value into *pNum and return 0.
**
** If zNum is exactly 9223372036854775808, return 2.  This special
** case is broken out because while 9223372036854775808 cannot be a 
** signed 64-bit integer, its negative -9223372036854775808 can be.
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
  if( zNum<zEnd ){
    if( *zNum=='-' ){
      neg = 1;
      zNum+=incr;
    }else if( *zNum=='+' ){
      zNum+=incr;
    }
#ifndef SQLITE_OMIT_HEX_INTEGER
    else if( *zNum=='0'
          &&  &zNum[incr*2]<zEnd
          && (zNum[incr]=='x' || zNum[incr]=='X')
          && sqlite3Isxdigit(zNum[incr*2])
    ){
      zNum += incr*2;
      while( zNum<zEnd && zNum[0]=='0' ) zNum += incr;
      for(i=0; &zNum[i]<zEnd && sqlite3Isxdigit(zNum[i]); i+=incr){
        u = u*16 + sqlite3HexToInt(zNum[i]);
      }
      memcpy(pNum, &u, 8);
      return &zNum[i]<zEnd || i>16*incr || nonNum;
    }
#endif
  }
  zStart = zNum;
  while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */
  for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){
    u = u*10 + c - '0';
  }
  if( u>LARGEST_INT64 ){







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







518
519
520
521
522
523
524















525
526
527
528
529
530
531
  if( zNum<zEnd ){
    if( *zNum=='-' ){
      neg = 1;
      zNum+=incr;
    }else if( *zNum=='+' ){
      zNum+=incr;
    }















  }
  zStart = zNum;
  while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */
  for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){
    u = u*10 + c - '0';
  }
  if( u>LARGEST_INT64 ){
604
605
606
607
608
609
610
611
612
































613
614


615
616
617
618
619
620
621
      /* zNum is exactly 9223372036854775808.  Fits if negative.  The
      ** special case 2 overflow if positive */
      assert( u-1==LARGEST_INT64 );
      return neg ? 0 : 2;
    }
  }
}

/*
































** If zNum represents an integer that will fit in 32-bits, then set
** *pValue to that integer and return true.  Otherwise return false.


**
** Any non-numeric characters that following zNum are ignored.
** This is different from sqlite3Atoi64() which requires the
** input number to be zero-terminated.
*/
int sqlite3GetInt32(const char *zNum, int *pValue){
  sqlite_int64 v = 0;









>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


>
>







560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
      /* zNum is exactly 9223372036854775808.  Fits if negative.  The
      ** special case 2 overflow if positive */
      assert( u-1==LARGEST_INT64 );
      return neg ? 0 : 2;
    }
  }
}

/*
** Transform a UTF-8 integer literal, in either decimal or hexadecimal,
** into a 64-bit signed integer.  This routine accepts hexadecimal literals,
** whereas sqlite3Atoi64() does not.
**
** Returns:
**
**     0    Successful transformation.  Fits in a 64-bit signed integer.
**     1    Integer too large for a 64-bit signed integer or is malformed
**     2    Special case of 9223372036854775808
*/
int sqlite3DecOrHexToI64(const char *z, i64 *pOut){
#ifndef SQLITE_OMIT_HEX_INTEGER
  if( z[0]=='0'
   && (z[1]=='x' || z[1]=='X')
   && sqlite3Isxdigit(z[2])
  ){
    u64 u = 0;
    int i, k;
    for(i=2; z[i]=='0'; i++){}
    for(k=i; sqlite3Isxdigit(z[k]); k++){
      u = u*16 + sqlite3HexToInt(z[k]);
    }
    memcpy(pOut, &u, 8);
    return (z[k]==0 && k-i<=16) ? 0 : 1;
  }else
#endif /* SQLITE_OMIT_HEX_INTEGER */
  {
    return sqlite3Atoi64(z, pOut, sqlite3Strlen30(z), SQLITE_UTF8);
  }
}

/*
** If zNum represents an integer that will fit in 32-bits, then set
** *pValue to that integer and return true.  Otherwise return false.
**
** This routine accepts both decimal and hexadecimal notation for integers.
**
** Any non-numeric characters that following zNum are ignored.
** This is different from sqlite3Atoi64() which requires the
** input number to be zero-terminated.
*/
int sqlite3GetInt32(const char *zNum, int *pValue){
  sqlite_int64 v = 0;
1087
1088
1089
1090
1091
1092
1093


















1094
1095
1096
1097
1098
1099
1100
void sqlite3Put4byte(unsigned char *p, u32 v){
  p[0] = (u8)(v>>24);
  p[1] = (u8)(v>>16);
  p[2] = (u8)(v>>8);
  p[3] = (u8)v;
}



















#if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
/*
** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
** value.  Return a pointer to its binary value.  Space to hold the
** binary value has been obtained from malloc and must be freed by
** the calling routine.
*/







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
void sqlite3Put4byte(unsigned char *p, u32 v){
  p[0] = (u8)(v>>24);
  p[1] = (u8)(v>>16);
  p[2] = (u8)(v>>8);
  p[3] = (u8)v;
}



/*
** Translate a single byte of Hex into an integer.
** This routine only works if h really is a valid hexadecimal
** character:  0..9a..fA..F
*/
u8 sqlite3HexToInt(int h){
  assert( (h>='0' && h<='9') ||  (h>='a' && h<='f') ||  (h>='A' && h<='F') );
#ifdef SQLITE_ASCII
  h += 9*(1&(h>>6));
#endif
#ifdef SQLITE_EBCDIC
  h += 9*(1&~(h>>4));
#endif
  return (u8)(h & 0xf);
}

#if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
/*
** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
** value.  Return a pointer to its binary value.  Space to hold the
** binary value has been obtained from malloc and must be freed by
** the calling routine.
*/
Changes to test/hexlit.test.
103
104
105
106
107
108
109


110




111


112

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
hexlit1 215 0x00d 13
hexlit1 216 0x00D 13
hexlit1 217 0x00e 14
hexlit1 218 0x00E 14 
hexlit1 219 0x00f 15
hexlit1 220 0x00F 15



proc hexlit2 {tnum hex ans} {




  do_execsql_test hexlit-$tnum "SELECT printf('%7e',CAST('$hex' AS real))" $ans


}


hexlit2 300 0x1 1.000000e+00
hexlit2 301 0x10 1.600000e+01
hexlit2 302 0x100 2.560000e+02
hexlit2 303 0x1000 4.096000e+03
hexlit2 304 0x10000 6.553600e+04
hexlit2 305 0x100000 1.048576e+06
hexlit2 306 0x1000000 1.677722e+07
hexlit2 307 0x10000000 2.684355e+08
hexlit2 308 0x100000000 4.294967e+09
hexlit2 309 0x1000000000 6.871948e+10
hexlit2 310 0x10000000000 1.099512e+12
hexlit2 311 0x100000000000 1.759219e+13
hexlit2 312 0x1000000000000 2.814750e+14
hexlit2 313 0x10000000000000 4.503600e+15
hexlit2 314 0x100000000000000 7.205759e+16
hexlit2 315 0x1000000000000000 1.152922e+18
hexlit2 316 0x10000000000000000 1.844674e+19
hexlit2 317 0x100000000000000000 2.951479e+20
hexlit2 318 0x1000000000000000000 4.722366e+21
hexlit2 319 0x10000000000000000000 7.555786e+22
hexlit2 320 0x100000000000000000000 1.208926e+24
hexlit2 321 0x1000000000000000000000 1.934281e+25
hexlit2 322 0x10000000000000000000000 3.094850e+26
hexlit2 323 0x100000000000000000000000 4.951760e+27
hexlit2 324 0x1000000000000000000000000 7.922816e+28
hexlit2 325 0x10000000000000000000000000 1.267651e+30
hexlit2 326 0x100000000000000000000000000 2.028241e+31
hexlit2 327 0x1000000000000000000000000000 3.245186e+32
hexlit2 328 0x10000000000000000000000000000 5.192297e+33
hexlit2 329 0x100000000000000000000000000000 8.307675e+34

hexlit2 400 0x07fffffffffffffff 9.223372e+18
hexlit2 401 0x08000000000000000 9.223372e+18
hexlit2 402 0x0ffffffffffffffff 1.844674e+19
hexlit2 403 0x10000000000000000 1.844674e+19

finish_test







>
>
|
>
>
>
>
|
>
>
|
>
|
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
|
<
<
<
<
<
<
<
<
<
<
<
<

<
<
<
<


103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123















124
125












126




127
128
hexlit1 215 0x00d 13
hexlit1 216 0x00D 13
hexlit1 217 0x00e 14
hexlit1 218 0x00E 14 
hexlit1 219 0x00f 15
hexlit1 220 0x00F 15

# String literals that look like hex do not get cast or coerced.
#
do_execsql_test hexlit-300 {
  CREATE TABLE t1(x INT, y REAL);
  INSERT INTO t1 VALUES('1234','4567'),('0x1234','0x4567');
  SELECT typeof(x), x, typeof(y), y, '#' FROM t1 ORDER BY rowid;
} {integer 1234 real 4567.0 # text 0x1234 text 0x4567 #}
do_execsql_test hexlit-301 {
  SELECT CAST('0x1234' AS INTEGER);
} {0}

# Oversized hex literals are rejected
#
do_catchsql_test hexlist-400 {















  SELECT 0x10000000000000000;
} {1 {hex literal too big: 0x10000000000000000}}


















finish_test