/ Changes On Branch branch-3.22
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Changes In Branch branch-3.22 Excluding Merge-Ins

This is equivalent to a diff from 0c55d17973 to cbcbb1e5a9

2020-01-17
14:18
Import all FTS3/4 enhancements and fixes that exist on the latest trunk (3.31.0-beta) that do not require extensive change to the SQLite core into the 3.22 branch. Basically, the 3.31.0 FTS3 sources are copied into 3.22.0, with minor changes to work around core enhancements that are not available in 3.22.0. (Leaf check-in: cbcbb1e5a9 user: drh tags: branch-3.22)
2019-09-03
18:36
Fix a buffer overread that could occur when running fts5 prefix queries inside a transaction. (check-in: 68b898381a user: drh tags: branch-3.22)
2018-03-22
17:17
Fix an RBU problem causing errors when updating tables with default collation sequences that require quoting (e.g. COLLATE "ICU_root-u-kn-on"). Cherrypick of [eb4f452e]. (check-in: 5dd61e1cbd user: dan tags: branch-3.22)
2018-01-23
00:05
Fix harmless compiler warnings seen with MSVC. (check-in: 76a11a80e9 user: mistachkin tags: trunk)
2018-01-22
19:04
Merge all version-3.22.0 changes. (check-in: 27e20d6998 user: drh tags: apple-osx)
18:45
Version 3.22.0 (check-in: 0c55d17973 user: drh tags: trunk, release, version-3.22.0)
15:45
Avoid unnecessary OOM detection warnings in a debugging routine. (check-in: 395f8ea790 user: drh tags: trunk)

Changes to ext/fts3/README.tokenizers.

48
49
50
51
52
53
54
55
56




57
58
59
60
61
62
63
48
49
50
51
52
53
54


55
56
57
58
59
60
61
62
63
64
65







-
-
+
+
+
+







  returned. If only one argument is passed, a pointer to the tokenizer
  implementation currently registered as <tokenizer-name> is returned,
  encoded as a blob. Or, if no such tokenizer exists, an SQL exception
  (error) is raised.

  SECURITY: If the fts3 extension is used in an environment where potentially
    malicious users may execute arbitrary SQL (i.e. gears), they should be
    prevented from invoking the fts3_tokenizer() function, possibly using the
    authorisation callback.
    prevented from invoking the fts3_tokenizer() function.  The
    fts3_tokenizer() function is disabled by default. It is only enabled
    by SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER. Do not enable it in
    security sensitive environments.

  See "Sample code" below for an example of calling the fts3_tokenizer()
  function from C code.

3. ICU Library Tokenizers

  If this extension is compiled with the SQLITE_ENABLE_ICU pre-processor 

Changes to ext/fts3/fts3.c.

316
317
318
319
320
321
322








323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341

342
343
344
345
346
347
348
349
350
351
352

353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372



































373
374
375
376
377
378

379
380
381
382

383
384

385
386
387
388
389
390



391
392

393
394
395
396
397
398
399
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

349
350
351
352
353
354






355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420

421
422

423
424
425
426



427
428
429
430

431
432
433
434
435
436
437
438







+
+
+
+
+
+
+
+


















-
+





-
-
-
-
-
-
+




















+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+






+



-
+

-
+



-
-
-
+
+
+

-
+







#ifndef SQLITE_AMALGAMATION
# if defined(SQLITE_DEBUG)
int sqlite3Fts3Always(int b) { assert( b ); return b; }
int sqlite3Fts3Never(int b)  { assert( !b ); return b; }
# endif
#endif

/*
** This variable is set to false when running tests for which the on disk
** structures should not be corrupt. Otherwise, true. If it is false, extra
** assert() conditions in the fts3 code are activated - conditions that are
** only true if it is guaranteed that the fts3 database is not corrupt.
*/
int sqlite3_fts3_may_be_corrupt = 1;

/* 
** Write a 64-bit variable-length integer to memory starting at p[0].
** The length of data written will be between 1 and FTS3_VARINT_MAX bytes.
** The number of bytes written is returned.
*/
int sqlite3Fts3PutVarint(char *p, sqlite_int64 v){
  unsigned char *q = (unsigned char *) p;
  sqlite_uint64 vu = v;
  do{
    *q++ = (unsigned char) ((vu & 0x7f) | 0x80);
    vu >>= 7;
  }while( vu!=0 );
  q[-1] &= 0x7f;  /* turn off high bit in final byte */
  assert( q - (unsigned char *)p <= FTS3_VARINT_MAX );
  return (int) (q - (unsigned char *)p);
}

#define GETVARINT_STEP(v, ptr, shift, mask1, mask2, var, ret) \
  v = (v & mask1) | ( (*ptr++) << shift );                    \
  v = (v & mask1) | ( (*(const unsigned char*)(ptr++)) << shift );  \
  if( (v & mask2)==0 ){ var = v; return ret; }
#define GETVARINT_INIT(v, ptr, shift, mask1, mask2, var, ret) \
  v = (*ptr++);                                               \
  if( (v & mask2)==0 ){ var = v; return ret; }

/* 
** Read a 64-bit variable-length integer from memory starting at p[0].
** Return the number of bytes read, or 0 on error.
** The value is stored in *v.
*/
int sqlite3Fts3GetVarint(const char *pBuf, sqlite_int64 *v){
int sqlite3Fts3GetVarintU(const char *pBuf, sqlite_uint64 *v){
  const unsigned char *p = (const unsigned char*)pBuf;
  const unsigned char *pStart = p;
  u32 a;
  u64 b;
  int shift;

  GETVARINT_INIT(a, p, 0,  0x00,     0x80, *v, 1);
  GETVARINT_STEP(a, p, 7,  0x7F,     0x4000, *v, 2);
  GETVARINT_STEP(a, p, 14, 0x3FFF,   0x200000, *v, 3);
  GETVARINT_STEP(a, p, 21, 0x1FFFFF, 0x10000000, *v, 4);
  b = (a & 0x0FFFFFFF );

  for(shift=28; shift<=63; shift+=7){
    u64 c = *p++;
    b += (c&0x7F) << shift;
    if( (c & 0x80)==0 ) break;
  }
  *v = b;
  return (int)(p - pStart);
}

/* 
** Read a 64-bit variable-length integer from memory starting at p[0].
** Return the number of bytes read, or 0 on error.
** The value is stored in *v.
*/
int sqlite3Fts3GetVarint(const char *pBuf, sqlite_int64 *v){
  return sqlite3Fts3GetVarintU(pBuf, (sqlite3_uint64*)v);
}

/* 
** Read a 64-bit variable-length integer from memory starting at p[0] and
** not extending past pEnd[-1].
** Return the number of bytes read, or 0 on error.
** The value is stored in *v.
*/
int sqlite3Fts3GetVarintBounded(
  const char *pBuf,
  const char *pEnd,
  sqlite_int64 *v
){
  const unsigned char *p = (const unsigned char*)pBuf;
  const unsigned char *pStart = p;
  const unsigned char *pX = (const unsigned char*)pEnd;
  u64 b = 0;
  int shift;
  for(shift=0; shift<=63; shift+=7){
    u64 c = p<pX ? *p : 0;
    p++;
    b += (c&0x7F) << shift;
    if( (c & 0x80)==0 ) break;
  }
  *v = b;
  return (int)(p - pStart);
}

/*
** Similar to sqlite3Fts3GetVarint(), except that the output is truncated to 
** a non-negative 32-bit integer before it is returned.
*/
int sqlite3Fts3GetVarint32(const char *p, int *pi){
  const unsigned char *ptr = (const unsigned char*)p;
  u32 a;

#ifndef fts3GetVarint32
  GETVARINT_INIT(a, p, 0,  0x00,     0x80, *pi, 1);
  GETVARINT_INIT(a, ptr, 0,  0x00,     0x80, *pi, 1);
#else
  a = (*p++);
  a = (*ptr++);
  assert( a & 0x80 );
#endif

  GETVARINT_STEP(a, p, 7,  0x7F,     0x4000, *pi, 2);
  GETVARINT_STEP(a, p, 14, 0x3FFF,   0x200000, *pi, 3);
  GETVARINT_STEP(a, p, 21, 0x1FFFFF, 0x10000000, *pi, 4);
  GETVARINT_STEP(a, ptr, 7,  0x7F,     0x4000, *pi, 2);
  GETVARINT_STEP(a, ptr, 14, 0x3FFF,   0x200000, *pi, 3);
  GETVARINT_STEP(a, ptr, 21, 0x1FFFFF, 0x10000000, *pi, 4);
  a = (a & 0x0FFFFFFF );
  *pi = (int)(a | ((u32)(*p & 0x07) << 28));
  *pi = (int)(a | ((u32)(*ptr & 0x07) << 28));
  assert( 0==(a & 0x80000000) );
  assert( *pi>=0 );
  return 5;
}

/*
** Return the number of bytes required to encode v as a varint
556
557
558
559
560
561
562
563
564

565
566
567
568
569











570
571
572
573
574
575
576
595
596
597
598
599
600
601


602





603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620







-
-
+
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+







static int fts3DestroyMethod(sqlite3_vtab *pVtab){
  Fts3Table *p = (Fts3Table *)pVtab;
  int rc = SQLITE_OK;              /* Return code */
  const char *zDb = p->zDb;        /* Name of database (e.g. "main", "temp") */
  sqlite3 *db = p->db;             /* Database handle */

  /* Drop the shadow tables */
  if( p->zContentTbl==0 ){
    fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_content'", zDb, p->zName);
  fts3DbExec(&rc, db, 
  }
  fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_segments'", zDb,p->zName);
  fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_segdir'", zDb, p->zName);
  fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_docsize'", zDb, p->zName);
  fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_stat'", zDb, p->zName);
    "DROP TABLE IF EXISTS %Q.'%q_segments';"
    "DROP TABLE IF EXISTS %Q.'%q_segdir';"
    "DROP TABLE IF EXISTS %Q.'%q_docsize';"
    "DROP TABLE IF EXISTS %Q.'%q_stat';"
    "%s DROP TABLE IF EXISTS %Q.'%q_content';",
    zDb, p->zName,
    zDb, p->zName,
    zDb, p->zName,
    zDb, p->zName,
    (p->zContentTbl ? "--" : ""), zDb,p->zName
  );

  /* If everything has worked, invoke fts3DisconnectMethod() to free the
  ** memory associated with the Fts3Table structure and return SQLITE_OK.
  ** Otherwise, return an SQLite error code.
  */
  return (rc==SQLITE_OK ? fts3DisconnectMethod(pVtab) : rc);
}
794
795
796
797
798
799
800
801

802
803
804

805
806
807
808
809
810
811
838
839
840
841
842
843
844

845
846
847

848
849
850
851
852
853
854
855







-
+


-
+







**     fts3QuoteId("un \"zip\"")   ->    "un \"\"zip\"\""
**
** The pointer returned points to memory obtained from sqlite3_malloc(). It
** is the callers responsibility to call sqlite3_free() to release this
** memory.
*/
static char *fts3QuoteId(char const *zInput){
  int nRet;
  sqlite3_int64 nRet;
  char *zRet;
  nRet = 2 + (int)strlen(zInput)*2 + 1;
  zRet = sqlite3_malloc(nRet);
  zRet = sqlite3_malloc64(nRet);
  if( zRet ){
    int i;
    char *z = zRet;
    *(z++) = '"';
    for(i=0; zInput[i]; i++){
      if( zInput[i]=='"' ) *(z++) = '"';
      *(z++) = zInput[i];
978
979
980
981
982
983
984
985

986
987
988
989
990
991
992
1022
1023
1024
1025
1026
1027
1028

1029
1030
1031
1032
1033
1034
1035
1036







-
+







    const char *p;
    nIndex++;
    for(p=zParam; *p; p++){
      if( *p==',' ) nIndex++;
    }
  }

  aIndex = sqlite3_malloc(sizeof(struct Fts3Index) * nIndex);
  aIndex = sqlite3_malloc64(sizeof(struct Fts3Index) * nIndex);
  *apIndex = aIndex;
  if( !aIndex ){
    return SQLITE_NOMEM;
  }

  memset(aIndex, 0, sizeof(struct Fts3Index) * nIndex);
  if( zParam ){
1057
1058
1059
1060
1061
1062
1063
1064

1065
1066
1067
1068
1069
1070
1071
1072
1073
1074

1075
1076
1077
1078

1079
1080
1081
1082
1083
1084
1085
1101
1102
1103
1104
1105
1106
1107

1108
1109
1110
1111
1112
1113
1114
1115
1116
1117

1118
1119
1120
1121

1122
1123
1124
1125
1126
1127
1128
1129







-
+









-
+



-
+







      sqlite3Fts3ErrMsg(pzErr, "%s", sqlite3_errmsg(db));
    }
  }
  sqlite3_free(zSql);

  if( rc==SQLITE_OK ){
    const char **azCol;           /* Output array */
    int nStr = 0;                 /* Size of all column names (incl. 0x00) */
    sqlite3_int64 nStr = 0;       /* Size of all column names (incl. 0x00) */
    int nCol;                     /* Number of table columns */
    int i;                        /* Used to iterate through columns */

    /* Loop through the returned columns. Set nStr to the number of bytes of
    ** space required to store a copy of each column name, including the
    ** nul-terminator byte.  */
    nCol = sqlite3_column_count(pStmt);
    for(i=0; i<nCol; i++){
      const char *zCol = sqlite3_column_name(pStmt, i);
      nStr += (int)strlen(zCol) + 1;
      nStr += strlen(zCol) + 1;
    }

    /* Allocate and populate the array to return. */
    azCol = (const char **)sqlite3_malloc(sizeof(char *) * nCol + nStr);
    azCol = (const char **)sqlite3_malloc64(sizeof(char *) * nCol + nStr);
    if( azCol==0 ){
      rc = SQLITE_NOMEM;
    }else{
      char *p = (char *)&azCol[nCol];
      for(i=0; i<nCol; i++){
        const char *zCol = sqlite3_column_name(pStmt, i);
        int n = (int)strlen(zCol)+1;
1119
1120
1121
1122
1123
1124
1125
1126

1127
1128
1129
1130
1131
1132
1133
1163
1164
1165
1166
1167
1168
1169

1170
1171
1172
1173
1174
1175
1176
1177







-
+







  sqlite3_vtab **ppVTab,          /* Write the resulting vtab structure here */
  char **pzErr                    /* Write any error message here */
){
  Fts3Hash *pHash = (Fts3Hash *)pAux;
  Fts3Table *p = 0;               /* Pointer to allocated vtab */
  int rc = SQLITE_OK;             /* Return code */
  int i;                          /* Iterator variable */
  int nByte;                      /* Size of allocation used for *p */
  sqlite3_int64 nByte;            /* Size of allocation used for *p */
  int iCol;                       /* Column index */
  int nString = 0;                /* Bytes required to hold all column names */
  int nCol = 0;                   /* Number of columns in the FTS table */
  char *zCsr;                     /* Space for holding column names */
  int nDb;                        /* Bytes required to hold database name */
  int nName;                      /* Bytes required to hold table name */
  int isFts4 = (argv[0][3]=='4'); /* True for FTS4, false for FTS3 */
1153
1154
1155
1156
1157
1158
1159
1160

1161
1162
1163

1164
1165
1166
1167
1168
1169
1170
1197
1198
1199
1200
1201
1202
1203

1204
1205
1206

1207
1208
1209
1210
1211
1212
1213
1214







-
+


-
+







       || (sqlite3_strnicmp(argv[0], "fts3", 4)==0 && !isFts4)
  );

  nDb = (int)strlen(argv[1]) + 1;
  nName = (int)strlen(argv[2]) + 1;

  nByte = sizeof(const char *) * (argc-2);
  aCol = (const char **)sqlite3_malloc(nByte);
  aCol = (const char **)sqlite3_malloc64(nByte);
  if( aCol ){
    memset((void*)aCol, 0, nByte);
    azNotindexed = (char **)sqlite3_malloc(nByte);
    azNotindexed = (char **)sqlite3_malloc64(nByte);
  }
  if( azNotindexed ){
    memset(azNotindexed, 0, nByte);
  }
  if( !aCol || !azNotindexed ){
    rc = SQLITE_NOMEM;
    goto fts3_init_out;
1351
1352
1353
1354
1355
1356
1357
1358

1359
1360
1361
1362
1363
1364
1365
1395
1396
1397
1398
1399
1400
1401

1402
1403
1404
1405
1406
1407
1408
1409







-
+







  nByte = sizeof(Fts3Table) +                  /* Fts3Table */
          nCol * sizeof(char *) +              /* azColumn */
          nIndex * sizeof(struct Fts3Index) +  /* aIndex */
          nCol * sizeof(u8) +                  /* abNotindexed */
          nName +                              /* zName */
          nDb +                                /* zDb */
          nString;                             /* Space for azColumn strings */
  p = (Fts3Table*)sqlite3_malloc(nByte);
  p = (Fts3Table*)sqlite3_malloc64(nByte);
  if( p==0 ){
    rc = SQLITE_NOMEM;
    goto fts3_init_out;
  }
  memset(p, 0, nByte);
  p->db = db;
  p->nColumn = nCol;
1455
1456
1457
1458
1459
1460
1461




1462
1463
1464
1465
1466
1467
1468
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516







+
+
+
+







    p->bHasStat = 2;
  }

  /* Figure out the page-size for the database. This is required in order to
  ** estimate the cost of loading large doclists from the database.  */
  fts3DatabasePageSize(&rc, p);
  p->nNodeSize = p->nPgsz-35;

#if defined(SQLITE_DEBUG)||defined(SQLITE_TEST)
  p->nMergeCount = FTS3_MERGE_COUNT;
#endif

  /* Declare the table schema to SQLite. */
  fts3DeclareVtab(&rc, p);

fts3_init_out:
  sqlite3_free(zPrefix);
  sqlite3_free(aIndex);
1550
1551
1552
1553
1554
1555
1556




1557
1558
1559
1560
1561
1562
1563
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615







+
+
+
+







  int i;                          /* Iterator variable */
  int iCons = -1;                 /* Index of constraint to use */

  int iLangidCons = -1;           /* Index of langid=x constraint, if present */
  int iDocidGe = -1;              /* Index of docid>=x constraint, if present */
  int iDocidLe = -1;              /* Index of docid<=x constraint, if present */
  int iIdx;

  if( p->bLock ){
    return SQLITE_ERROR;
  }

  /* By default use a full table scan. This is an expensive option,
  ** so search through the constraints to see if a more efficient 
  ** strategy is possible.
  */
  pInfo->idxNum = FTS3_FULLSCAN_SEARCH;
  pInfo->estimatedCost = 5000000;
1749
1750
1751
1752
1753
1754
1755


1756



1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773


1774
1775
1776

1777
1778

1779
1780
1781
1782
1783
1784
1785
1801
1802
1803
1804
1805
1806
1807
1808
1809

1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845







+
+
-
+
+
+

















+
+



+


+







    char *zSql;
    if( p->pSeekStmt ){
      pCsr->pStmt = p->pSeekStmt;
      p->pSeekStmt = 0;
    }else{
      zSql = sqlite3_mprintf("SELECT %s WHERE rowid = ?", p->zReadExprlist);
      if( !zSql ) return SQLITE_NOMEM;
      p->bLock++;
      rc = sqlite3_prepare_v3(
      rc = sqlite3_prepare_v3(p->db, zSql,-1,SQLITE_PREPARE_PERSISTENT,&pCsr->pStmt,0);
          p->db, zSql,-1,SQLITE_PREPARE_PERSISTENT,&pCsr->pStmt,0
      );
      p->bLock--;
      sqlite3_free(zSql);
    }
    if( rc==SQLITE_OK ) pCsr->bSeekStmt = 1;
  }
  return rc;
}

/*
** Position the pCsr->pStmt statement so that it is on the row
** of the %_content table that contains the last match.  Return
** SQLITE_OK on success.  
*/
static int fts3CursorSeek(sqlite3_context *pContext, Fts3Cursor *pCsr){
  int rc = SQLITE_OK;
  if( pCsr->isRequireSeek ){
    rc = fts3CursorSeekStmt(pCsr);
    if( rc==SQLITE_OK ){
      Fts3Table *pTab = (Fts3Table*)pCsr->base.pVtab;
      pTab->bLock++;
      sqlite3_bind_int64(pCsr->pStmt, 1, pCsr->iPrevId);
      pCsr->isRequireSeek = 0;
      if( SQLITE_ROW==sqlite3_step(pCsr->pStmt) ){
        pTab->bLock--;
        return SQLITE_OK;
      }else{
        pTab->bLock--;
        rc = sqlite3_reset(pCsr->pStmt);
        if( rc==SQLITE_OK && ((Fts3Table *)pCsr->base.pVtab)->zContentTbl==0 ){
          /* If no row was found and no error has occurred, then the %_content
          ** table is missing a row that is present in the full-text index.
          ** The data structures are corrupt.  */
          rc = FTS_CORRUPT_VTAB;
          pCsr->isEof = 1;
1817
1818
1819
1820
1821
1822
1823
1824

1825
1826
1827
1828
1829
1830
1831
1877
1878
1879
1880
1881
1882
1883

1884
1885
1886
1887
1888
1889
1890
1891







-
+







  sqlite3_int64 *piFirst,         /* OUT: Selected child node */
  sqlite3_int64 *piLast           /* OUT: Selected child node */
){
  int rc = SQLITE_OK;             /* Return code */
  const char *zCsr = zNode;       /* Cursor to iterate through node */
  const char *zEnd = &zCsr[nNode];/* End of interior node buffer */
  char *zBuffer = 0;              /* Buffer to load terms into */
  int nAlloc = 0;                 /* Size of allocated buffer */
  i64 nAlloc = 0;                 /* Size of allocated buffer */
  int isFirstTerm = 1;            /* True when processing first term on page */
  sqlite3_int64 iChild;           /* Block id of child node to descend to */

  /* Skip over the 'height' varint that occurs at the start of every 
  ** interior node. Then load the blockid of the left-child of the b-tree
  ** node into variable iChild.  
  **
1855
1856
1857
1858
1859
1860
1861
1862

1863
1864
1865
1866

1867
1868
1869


1870
1871
1872
1873
1874
1875
1876
1915
1916
1917
1918
1919
1920
1921

1922
1923
1924
1925

1926
1927


1928
1929
1930
1931
1932
1933
1934
1935
1936







-
+



-
+

-
-
+
+







    if( !isFirstTerm ){
      zCsr += fts3GetVarint32(zCsr, &nPrefix);
    }
    isFirstTerm = 0;
    zCsr += fts3GetVarint32(zCsr, &nSuffix);
    
    assert( nPrefix>=0 && nSuffix>=0 );
    if( &zCsr[nSuffix]>zEnd ){
    if( nPrefix>zCsr-zNode || nSuffix>zEnd-zCsr || nSuffix==0 ){
      rc = FTS_CORRUPT_VTAB;
      goto finish_scan;
    }
    if( nPrefix+nSuffix>nAlloc ){
    if( (i64)nPrefix+nSuffix>nAlloc ){
      char *zNew;
      nAlloc = (nPrefix+nSuffix) * 2;
      zNew = (char *)sqlite3_realloc(zBuffer, nAlloc);
      nAlloc = ((i64)nPrefix+nSuffix) * 2;
      zNew = (char *)sqlite3_realloc64(zBuffer, nAlloc);
      if( !zNew ){
        rc = SQLITE_NOMEM;
        goto finish_scan;
      }
      zBuffer = zNew;
    }
    assert( zBuffer );
1943
1944
1945
1946
1947
1948
1949
1950

1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969





1970


1971
1972
1973
1974
1975
1976
1977
2003
2004
2005
2006
2007
2008
2009

2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034

2035
2036
2037
2038
2039
2040
2041
2042
2043







-
+



















+
+
+
+
+
-
+
+







  int rc = SQLITE_OK;             /* Return code */
  int iHeight;                    /* Height of this node in tree */

  assert( piLeaf || piLeaf2 );

  fts3GetVarint32(zNode, &iHeight);
  rc = fts3ScanInteriorNode(zTerm, nTerm, zNode, nNode, piLeaf, piLeaf2);
  assert( !piLeaf2 || !piLeaf || rc!=SQLITE_OK || (*piLeaf<=*piLeaf2) );
  assert_fts3_nc( !piLeaf2 || !piLeaf || rc!=SQLITE_OK || (*piLeaf<=*piLeaf2) );

  if( rc==SQLITE_OK && iHeight>1 ){
    char *zBlob = 0;              /* Blob read from %_segments table */
    int nBlob = 0;                /* Size of zBlob in bytes */

    if( piLeaf && piLeaf2 && (*piLeaf!=*piLeaf2) ){
      rc = sqlite3Fts3ReadBlock(p, *piLeaf, &zBlob, &nBlob, 0);
      if( rc==SQLITE_OK ){
        rc = fts3SelectLeaf(p, zTerm, nTerm, zBlob, nBlob, piLeaf, 0);
      }
      sqlite3_free(zBlob);
      piLeaf = 0;
      zBlob = 0;
    }

    if( rc==SQLITE_OK ){
      rc = sqlite3Fts3ReadBlock(p, piLeaf?*piLeaf:*piLeaf2, &zBlob, &nBlob, 0);
    }
    if( rc==SQLITE_OK ){
      int iNewHeight = 0;
      fts3GetVarint32(zBlob, &iNewHeight);
      if( iNewHeight>=iHeight ){
        rc = FTS_CORRUPT_VTAB;
      }else{
      rc = fts3SelectLeaf(p, zTerm, nTerm, zBlob, nBlob, piLeaf, piLeaf2);
        rc = fts3SelectLeaf(p, zTerm, nTerm, zBlob, nBlob, piLeaf, piLeaf2);
      }
    }
    sqlite3_free(zBlob);
  }

  return rc;
}

2068
2069
2070
2071
2072
2073
2074
2075
2076



2077
2078

2079
2080
2081
2082
2083
2084
2085
2134
2135
2136
2137
2138
2139
2140


2141
2142
2143
2144

2145
2146
2147
2148
2149
2150
2151
2152







-
-
+
+
+

-
+







    p += n;
    *pp = p;
  }
  *ppPoslist = pEnd;
}

/*
** Value used to signify the end of an position-list. This is safe because
** it is not possible to have a document with 2^31 terms.
** Value used to signify the end of an position-list. This must be
** as large or larger than any value that might appear on the
** position-list, even a position list that has been corrupted.
*/
#define POSITION_LIST_END 0x7fffffff
#define POSITION_LIST_END LARGEST_INT64

/*
** This function is used to help parse position-lists. When this function is
** called, *pp may point to the start of the next varint in the position-list
** being parsed, or it may point to 1 byte past the end of the position-list
** (in which case **pp will be a terminator bytes POS_END (0) or
** (1)).
2130
2131
2132
2133
2134
2135
2136
2137

2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151





2152
2153
2154
2155





2156
2157
2158
2159
2160
2161
2162
2197
2198
2199
2200
2201
2202
2203

2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216


2217
2218
2219
2220
2221
2222
2223


2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235







-
+












-
-
+
+
+
+
+


-
-
+
+
+
+
+







/*
** Compute the union of two position lists.  The output written
** into *pp contains all positions of both *pp1 and *pp2 in sorted
** order and with any duplicates removed.  All pointers are
** updated appropriately.   The caller is responsible for insuring
** that there is enough space in *pp to hold the complete output.
*/
static void fts3PoslistMerge(
static int fts3PoslistMerge(
  char **pp,                      /* Output buffer */
  char **pp1,                     /* Left input list */
  char **pp2                      /* Right input list */
){
  char *p = *pp;
  char *p1 = *pp1;
  char *p2 = *pp2;

  while( *p1 || *p2 ){
    int iCol1;         /* The current column index in pp1 */
    int iCol2;         /* The current column index in pp2 */

    if( *p1==POS_COLUMN ) fts3GetVarint32(&p1[1], &iCol1);
    else if( *p1==POS_END ) iCol1 = POSITION_LIST_END;
    if( *p1==POS_COLUMN ){ 
      fts3GetVarint32(&p1[1], &iCol1);
      if( iCol1==0 ) return FTS_CORRUPT_VTAB;
    }
    else if( *p1==POS_END ) iCol1 = 0x7fffffff;
    else iCol1 = 0;

    if( *p2==POS_COLUMN ) fts3GetVarint32(&p2[1], &iCol2);
    else if( *p2==POS_END ) iCol2 = POSITION_LIST_END;
    if( *p2==POS_COLUMN ){
      fts3GetVarint32(&p2[1], &iCol2);
      if( iCol2==0 ) return FTS_CORRUPT_VTAB;
    }
    else if( *p2==POS_END ) iCol2 = 0x7fffffff;
    else iCol2 = 0;

    if( iCol1==iCol2 ){
      sqlite3_int64 i1 = 0;       /* Last position from pp1 */
      sqlite3_int64 i2 = 0;       /* Last position from pp2 */
      sqlite3_int64 iPrev = 0;
      int n = fts3PutColNumber(&p, iCol1);
2195
2196
2197
2198
2199
2200
2201

2202
2203
2204
2205
2206
2207
2208
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282







+







    }
  }

  *p++ = POS_END;
  *pp = p;
  *pp1 = p1 + 1;
  *pp2 = p2 + 1;
  return SQLITE_OK;
}

/*
** This function is used to merge two position lists into one. When it is
** called, *pp1 and *pp2 must both point to position lists. A position-list is
** the part of a doclist that follows each document id. For example, if a row
** contains:
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269

2270
2271
2272
2273
2274
2275
2276
2333
2334
2335
2336
2337
2338
2339


2340
2341
2342
2343
2344
2345
2346
2347
2348
2349







-
-


+







      sqlite3_int64 iPos2 = 0;

      if( iCol1 ){
        *p++ = POS_COLUMN;
        p += sqlite3Fts3PutVarint(p, iCol1);
      }

      assert( *p1!=POS_END && *p1!=POS_COLUMN );
      assert( *p2!=POS_END && *p2!=POS_COLUMN );
      fts3GetDeltaVarint(&p1, &iPos1); iPos1 -= 2;
      fts3GetDeltaVarint(&p2, &iPos2); iPos2 -= 2;
      if( iPos1<0 || iPos2<0 ) break;

      while( 1 ){
        if( iPos2==iPos1+nToken 
         || (isExact==0 && iPos2>iPos1 && iPos2<=iPos1+nToken) 
        ){
          sqlite3_int64 iSave;
          iSave = isSaveLeft ? iPos1 : iPos2;
2411
2412
2413
2414
2415
2416
2417
2418
2419


2420
2421

2422
2423

2424
2425
2426
2427
2428
2429
2430
2484
2485
2486
2487
2488
2489
2490


2491
2492
2493

2494
2495

2496
2497
2498
2499
2500
2501
2502
2503







-
-
+
+

-
+

-
+







  char *pEnd,                     /* End of buffer */
  int bDescIdx,                   /* True if docids are descending */
  sqlite3_int64 *pVal             /* IN/OUT: Integer value */
){
  if( *pp>=pEnd ){
    *pp = 0;
  }else{
    sqlite3_int64 iVal;
    *pp += sqlite3Fts3GetVarint(*pp, &iVal);
    u64 iVal;
    *pp += sqlite3Fts3GetVarintU(*pp, &iVal);
    if( bDescIdx ){
      *pVal -= iVal;
      *pVal = (i64)((u64)*pVal - iVal);
    }else{
      *pVal += iVal;
      *pVal = (i64)((u64)*pVal + iVal);
    }
  }
}

/*
** This function is used to write a single varint to a buffer. The varint
** is written to *pp. Before returning, *pp is set to point 1 byte past the
2443
2444
2445
2446
2447
2448
2449
2450

2451

2452

2453

2454

2455
2456
2457

2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472

2473

2474
2475
2476
2477
2478
2479
2480
2516
2517
2518
2519
2520
2521
2522

2523
2524
2525

2526
2527
2528

2529
2530
2531

2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548

2549
2550
2551
2552
2553
2554
2555
2556







-
+

+
-
+

+
-
+


-
+















+
-
+







static void fts3PutDeltaVarint3(
  char **pp,                      /* IN/OUT: Output pointer */
  int bDescIdx,                   /* True for descending docids */
  sqlite3_int64 *piPrev,          /* IN/OUT: Previous value written to list */
  int *pbFirst,                   /* IN/OUT: True after first int written */
  sqlite3_int64 iVal              /* Write this value to the list */
){
  sqlite3_int64 iWrite;
  sqlite3_uint64 iWrite;
  if( bDescIdx==0 || *pbFirst==0 ){
    assert_fts3_nc( *pbFirst==0 || iVal>=*piPrev );
    iWrite = iVal - *piPrev;
    iWrite = (u64)iVal - (u64)*piPrev;
  }else{
    assert_fts3_nc( *piPrev>=iVal );
    iWrite = *piPrev - iVal;
    iWrite = (u64)*piPrev - (u64)iVal;
  }
  assert( *pbFirst || *piPrev==0 );
  assert( *pbFirst==0 || iWrite>0 );
  assert_fts3_nc( *pbFirst==0 || iWrite>0 );
  *pp += sqlite3Fts3PutVarint(*pp, iWrite);
  *piPrev = iVal;
  *pbFirst = 1;
}


/*
** This macro is used by various functions that merge doclists. The two
** arguments are 64-bit docid values. If the value of the stack variable
** bDescDoclist is 0 when this macro is invoked, then it returns (i1-i2). 
** Otherwise, (i2-i1).
**
** Using this makes it easier to write code that can merge doclists that are
** sorted in either ascending or descending order.
*/
/* #define DOCID_CMP(i1, i2) ((bDescDoclist?-1:1) * (i64)((u64)i1-i2)) */
#define DOCID_CMP(i1, i2) ((bDescDoclist?-1:1) * (i1-i2))
#define DOCID_CMP(i1, i2) ((bDescDoclist?-1:1) * (i1>i2?1:((i1==i2)?0:-1)))

/*
** This function does an "OR" merge of two doclists (output contains all
** positions contained in either argument doclist). If the docids in the 
** input doclists are sorted in ascending order, parameter bDescDoclist
** should be false. If they are sorted in ascending order, it should be
** passed a non-zero value.
2488
2489
2490
2491
2492
2493
2494

2495
2496
2497
2498
2499
2500
2501
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578







+







*/
static int fts3DoclistOrMerge(
  int bDescDoclist,               /* True if arguments are desc */
  char *a1, int n1,               /* First doclist */
  char *a2, int n2,               /* Second doclist */
  char **paOut, int *pnOut        /* OUT: Malloc'd doclist */
){
  int rc = SQLITE_OK;
  sqlite3_int64 i1 = 0;
  sqlite3_int64 i2 = 0;
  sqlite3_int64 iPrev = 0;
  char *pEnd1 = &a1[n1];
  char *pEnd2 = &a2[n2];
  char *p1 = a1;
  char *p2 = a2;
2531
2532
2533
2534
2535
2536
2537
2538

2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549


2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562











2563
2564
2565
2566

2567
2568
2569
2570
2571
2572
2573
2608
2609
2610
2611
2612
2613
2614

2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625

2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638


2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651


2652
2653
2654
2655
2656
2657
2658
2659







-
+










-
+
+











-
-
+
+
+
+
+
+
+
+
+
+
+


-
-
+







  ** The space required to store the output is therefore the sum of the
  ** sizes of the two inputs, plus enough space for exactly one of the input
  ** docids to grow. 
  **
  ** A symetric argument may be made if the doclists are in descending 
  ** order.
  */
  aOut = sqlite3_malloc(n1+n2+FTS3_VARINT_MAX-1);
  aOut = sqlite3_malloc64((i64)n1+n2+FTS3_VARINT_MAX-1+FTS3_BUFFER_PADDING);
  if( !aOut ) return SQLITE_NOMEM;

  p = aOut;
  fts3GetDeltaVarint3(&p1, pEnd1, 0, &i1);
  fts3GetDeltaVarint3(&p2, pEnd2, 0, &i2);
  while( p1 || p2 ){
    sqlite3_int64 iDiff = DOCID_CMP(i1, i2);

    if( p2 && p1 && iDiff==0 ){
      fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i1);
      fts3PoslistMerge(&p, &p1, &p2);
      rc = fts3PoslistMerge(&p, &p1, &p2);
      if( rc ) break;
      fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1);
      fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2);
    }else if( !p2 || (p1 && iDiff<0) ){
      fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i1);
      fts3PoslistCopy(&p, &p1);
      fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1);
    }else{
      fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i2);
      fts3PoslistCopy(&p, &p2);
      fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2);
    }
  }

    
    assert( (p-aOut)<=((p1?(p1-a1):n1)+(p2?(p2-a2):n2)+FTS3_VARINT_MAX-1) );
  }

  if( rc!=SQLITE_OK ){
    sqlite3_free(aOut);
    p = aOut = 0;
  }else{
    assert( (p-aOut)<=n1+n2+FTS3_VARINT_MAX-1 );
    memset(&aOut[(p-aOut)], 0, FTS3_BUFFER_PADDING);
  }
  *paOut = aOut;
  *pnOut = (int)(p-aOut);
  assert( *pnOut<=n1+n2+FTS3_VARINT_MAX-1 );
  return SQLITE_OK;
  return rc;
}

/*
** This function does a "phrase" merge of two doclists. In a phrase merge,
** the output contains a copy of each position from the right-hand input
** doclist for which there is a position in the left-hand input doclist
** exactly nDist tokens before it.
2594
2595
2596
2597
2598
2599
2600
2601

2602
2603
2604
2605
2606
2607
2608
2680
2681
2682
2683
2684
2685
2686

2687
2688
2689
2690
2691
2692
2693
2694







-
+







  char *p2 = aRight;
  char *p;
  int bFirstOut = 0;
  char *aOut;

  assert( nDist>0 );
  if( bDescDoclist ){
    aOut = sqlite3_malloc(*pnRight + FTS3_VARINT_MAX);
    aOut = sqlite3_malloc64((sqlite3_int64)*pnRight + FTS3_VARINT_MAX);
    if( aOut==0 ) return SQLITE_NOMEM;
  }else{
    aOut = aRight;
  }
  p = aOut;

  fts3GetDeltaVarint3(&p1, pEnd1, 0, &i1);
2778
2779
2780
2781
2782
2783
2784

2785
2786
2787
2788
2789
2790
2791
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878







+







    **
    ** Similar padding is added in the fts3DoclistOrMerge() function.
    */
    pTS->aaOutput[0] = sqlite3_malloc(nDoclist + FTS3_VARINT_MAX + 1);
    pTS->anOutput[0] = nDoclist;
    if( pTS->aaOutput[0] ){
      memcpy(pTS->aaOutput[0], aDoclist, nDoclist);
      memset(&pTS->aaOutput[0][nDoclist], 0, FTS3_VARINT_MAX);
    }else{
      return SQLITE_NOMEM;
    }
  }else{
    char *aMerge = aDoclist;
    int nMerge = nDoclist;
    int iOut;
2829
2830
2831
2832
2833
2834
2835
2836
2837


2838
2839
2840
2841
2842
2843
2844
2916
2917
2918
2919
2920
2921
2922


2923
2924
2925
2926
2927
2928
2929
2930
2931







-
-
+
+







*/
static int fts3SegReaderCursorAppend(
  Fts3MultiSegReader *pCsr, 
  Fts3SegReader *pNew
){
  if( (pCsr->nSegment%16)==0 ){
    Fts3SegReader **apNew;
    int nByte = (pCsr->nSegment + 16)*sizeof(Fts3SegReader*);
    apNew = (Fts3SegReader **)sqlite3_realloc(pCsr->apSegment, nByte);
    sqlite3_int64 nByte = (pCsr->nSegment + 16)*sizeof(Fts3SegReader*);
    apNew = (Fts3SegReader **)sqlite3_realloc64(pCsr->apSegment, nByte);
    if( !apNew ){
      sqlite3Fts3SegReaderFree(pNew);
      return SQLITE_NOMEM;
    }
    pCsr->apSegment = apNew;
  }
  pCsr->apSegment[pCsr->nSegment++] = pNew;
2869
2870
2871
2872
2873
2874
2875
2876

2877
2878
2879
2880
2881
2882
2883
2956
2957
2958
2959
2960
2961
2962

2963
2964
2965
2966
2967
2968
2969
2970







-
+








  /* If iLevel is less than 0 and this is not a scan, include a seg-reader 
  ** for the pending-terms. If this is a scan, then this call must be being
  ** made by an fts4aux module, not an FTS table. In this case calling
  ** Fts3SegReaderPending might segfault, as the data structures used by 
  ** fts4aux are not completely populated. So it's easiest to filter these
  ** calls out here.  */
  if( iLevel<0 && p->aIndex ){
  if( iLevel<0 && p->aIndex && p->iPrevLangid==iLangid ){
    Fts3SegReader *pSeg = 0;
    rc = sqlite3Fts3SegReaderPending(p, iIndex, zTerm, nTerm, isPrefix||isScan, &pSeg);
    if( rc==SQLITE_OK && pSeg ){
      rc = fts3SegReaderCursorAppend(pCsr, pSeg);
    }
  }

2894
2895
2896
2897
2898
2899
2900
2901

2902
2903
2904
2905
2906
2907
2908
2981
2982
2983
2984
2985
2986
2987

2988
2989
2990
2991
2992
2993
2994
2995







-
+







      sqlite3_int64 iLeavesEndBlock = sqlite3_column_int64(pStmt, 2);
      sqlite3_int64 iEndBlock = sqlite3_column_int64(pStmt, 3);
      int nRoot = sqlite3_column_bytes(pStmt, 4);
      char const *zRoot = sqlite3_column_blob(pStmt, 4);

      /* If zTerm is not NULL, and this segment is not stored entirely on its
      ** root node, the range of leaves scanned can be reduced. Do this. */
      if( iStartBlock && zTerm ){
      if( iStartBlock && zTerm && zRoot ){
        sqlite3_int64 *pi = (isPrefix ? &iLeavesEndBlock : 0);
        rc = fts3SelectLeaf(p, zTerm, nTerm, zRoot, nRoot, &iStartBlock, pi);
        if( rc!=SQLITE_OK ) goto finished;
        if( isPrefix==0 && isScan==0 ) iLeavesEndBlock = iStartBlock;
      }
 
      rc = sqlite3Fts3SegReaderNew(pCsr->nSegment+1, 
3132
3133
3134
3135
3136
3137
3138


3139
3140
3141
3142
3143
3144
3145

3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242












3243
3244
3245
3246
3247
3248
3249







+
+







+







-
-
-
-
-
-
-
-
-
-
-
-







** even if we reach end-of-file.  The fts3EofMethod() will be called
** subsequently to determine whether or not an EOF was hit.
*/
static int fts3NextMethod(sqlite3_vtab_cursor *pCursor){
  int rc;
  Fts3Cursor *pCsr = (Fts3Cursor *)pCursor;
  if( pCsr->eSearch==FTS3_DOCID_SEARCH || pCsr->eSearch==FTS3_FULLSCAN_SEARCH ){
    Fts3Table *pTab = (Fts3Table*)pCursor->pVtab;
    pTab->bLock++;
    if( SQLITE_ROW!=sqlite3_step(pCsr->pStmt) ){
      pCsr->isEof = 1;
      rc = sqlite3_reset(pCsr->pStmt);
    }else{
      pCsr->iPrevId = sqlite3_column_int64(pCsr->pStmt, 0);
      rc = SQLITE_OK;
    }
    pTab->bLock--;
  }else{
    rc = fts3EvalNext((Fts3Cursor *)pCursor);
  }
  assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 );
  return rc;
}

/*
** The following are copied from sqliteInt.h.
**
** Constants for the largest and smallest possible 64-bit signed integers.
** These macros are designed to work correctly on both 32-bit and 64-bit
** compilers.
*/
#ifndef SQLITE_AMALGAMATION
# define LARGEST_INT64  (0xffffffff|(((sqlite3_int64)0x7fffffff)<<32))
# define SMALLEST_INT64 (((sqlite3_int64)-1) - LARGEST_INT64)
#endif

/*
** If the numeric type of argument pVal is "integer", then return it
** converted to a 64-bit signed integer. Otherwise, return a copy of
** the second parameter, iDefault.
*/
static sqlite3_int64 fts3DocidRange(sqlite3_value *pVal, i64 iDefault){
  if( pVal ){
3210
3211
3212
3213
3214
3215
3216




3217
3218
3219
3220
3221
3222
3223
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305







+
+
+
+







  sqlite3_value *pLangid = 0;     /* The "langid = ?" constraint, if any */
  sqlite3_value *pDocidGe = 0;    /* The "docid >= ?" constraint, if any */
  sqlite3_value *pDocidLe = 0;    /* The "docid <= ?" constraint, if any */
  int iIdx;

  UNUSED_PARAMETER(idxStr);
  UNUSED_PARAMETER(nVal);

  if( p->bLock ){
    return SQLITE_ERROR;
  }

  eSearch = (idxNum & 0x0000FFFF);
  assert( eSearch>=0 && eSearch<=(FTS3_FULLTEXT_SEARCH+p->nColumn) );
  assert( p->pSegments==0 );

  /* Collect arguments into local variables */
  iIdx = 0;
3282
3283
3284
3285
3286
3287
3288


3289



3290
3291
3292
3293
3294
3295
3296
3364
3365
3366
3367
3368
3369
3370
3371
3372

3373
3374
3375
3376
3377
3378
3379
3380
3381
3382







+
+
-
+
+
+







      );
    }else{
      zSql = sqlite3_mprintf("SELECT %s ORDER BY rowid %s", 
          p->zReadExprlist, (pCsr->bDesc ? "DESC" : "ASC")
      );
    }
    if( zSql ){
      p->bLock++;
      rc = sqlite3_prepare_v3(
      rc = sqlite3_prepare_v3(p->db,zSql,-1,SQLITE_PREPARE_PERSISTENT,&pCsr->pStmt,0);
          p->db,zSql,-1,SQLITE_PREPARE_PERSISTENT,&pCsr->pStmt,0
      );
      p->bLock--;
      sqlite3_free(zSql);
    }else{
      rc = SQLITE_NOMEM;
    }
  }else if( eSearch==FTS3_DOCID_SEARCH ){
    rc = fts3CursorSeekStmt(pCsr);
    if( rc==SQLITE_OK ){
3804
3805
3806
3807
3808
3809
3810
3811

3812
3813
3814
3815
3816
3817
3818
3890
3891
3892
3893
3894
3895
3896

3897
3898
3899
3900
3901
3902
3903
3904







-
+







**
** Flush the contents of the pending-terms table to disk.
*/
static int fts3SavepointMethod(sqlite3_vtab *pVtab, int iSavepoint){
  int rc = SQLITE_OK;
  UNUSED_PARAMETER(iSavepoint);
  assert( ((Fts3Table *)pVtab)->inTransaction );
  assert( ((Fts3Table *)pVtab)->mxSavepoint < iSavepoint );
  assert( ((Fts3Table *)pVtab)->mxSavepoint <= iSavepoint );
  TESTONLY( ((Fts3Table *)pVtab)->mxSavepoint = iSavepoint );
  if( ((Fts3Table *)pVtab)->bIgnoreSavepoint==0 ){
    rc = fts3SyncMethod(pVtab);
  }
  return rc;
}

3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850

3851
3852
3853
3854
3855
3856
3857
3922
3923
3924
3925
3926
3927
3928

3929
3930
3931
3932
3933
3934

3935
3936
3937
3938
3939
3940
3941
3942







-






-
+







**
** Discard the contents of the pending terms table.
*/
static int fts3RollbackToMethod(sqlite3_vtab *pVtab, int iSavepoint){
  Fts3Table *p = (Fts3Table*)pVtab;
  UNUSED_PARAMETER(iSavepoint);
  assert( p->inTransaction );
  assert( p->mxSavepoint >= iSavepoint );
  TESTONLY( p->mxSavepoint = iSavepoint );
  sqlite3Fts3PendingTermsClear(p);
  return SQLITE_OK;
}

static const sqlite3_module fts3Module = {
  /* iVersion      */ 2,
  /* iVersion      */ 3,
  /* xCreate       */ fts3CreateMethod,
  /* xConnect      */ fts3ConnectMethod,
  /* xBestIndex    */ fts3BestIndexMethod,
  /* xDisconnect   */ fts3DisconnectMethod,
  /* xDestroy      */ fts3DestroyMethod,
  /* xOpen         */ fts3OpenMethod,
  /* xClose        */ fts3CloseMethod,
3959
3960
3961
3962
3963
3964
3965
3966

3967
3968
3969
3970
3971
3972
3973
4044
4045
4046
4047
4048
4049
4050

4051
4052
4053
4054
4055
4056
4057
4058







-
+







    ){
      rc = SQLITE_NOMEM;
    }
  }

#ifdef SQLITE_TEST
  if( rc==SQLITE_OK ){
    rc = sqlite3Fts3ExprInitTestInterface(db);
    rc = sqlite3Fts3ExprInitTestInterface(db, pHash);
  }
#endif

  /* Create the virtual table wrapper around the hash-table and overload 
  ** the four scalar functions. If this is successful, register the
  ** module with sqlite.
  */
4146
4147
4148
4149
4150
4151
4152

4153
4154
4155
4156
4157
4158
4159
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245







+







    }
    assert( pToken->pSegcsr==0 );
  }

  return rc;
}

#ifndef SQLITE_DISABLE_FTS4_DEFERRED
/*
** This function is called on each phrase after the position lists for
** any deferred tokens have been loaded into memory. It updates the phrases
** current position list to include only those positions that are really
** instances of the phrase (after considering deferred tokens). If this
** means that the phrase does not appear in the current row, doclist.pList
** and doclist.nList are both zeroed.
4249
4250
4251
4252
4253
4254
4255

4256
4257
4258
4259
4260
4261
4262
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349







+







      }
      sqlite3_free(aPoslist);
    }
  }

  return SQLITE_OK;
}
#endif /* SQLITE_DISABLE_FTS4_DEFERRED */

/*
** Maximum number of tokens a phrase may have to be considered for the
** incremental doclists strategy.
*/
#define MAX_INCR_PHRASE_TOKENS 4

4282
4283
4284
4285
4286
4287
4288
4289

4290
4291
4292
4293
4294
4295
4296
4369
4370
4371
4372
4373
4374
4375

4376
4377
4378
4379
4380
4381
4382
4383







-
+







  ** scanned in forward order, and the phrase consists of 
  ** MAX_INCR_PHRASE_TOKENS or fewer tokens, none of which are are "^first"
  ** tokens or prefix tokens that cannot use a prefix-index.  */
  int bHaveIncr = 0;
  int bIncrOk = (bOptOk 
   && pCsr->bDesc==pTab->bDescIdx 
   && p->nToken<=MAX_INCR_PHRASE_TOKENS && p->nToken>0
#ifdef SQLITE_TEST
#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
   && pTab->bNoIncrDoclist==0
#endif
  );
  for(i=0; bIncrOk==1 && i<p->nToken; i++){
    Fts3PhraseToken *pToken = &p->aToken[i];
    if( pToken->bFirst || (pToken->pSegcsr!=0 && !pToken->pSegcsr->bLookup) ){
      bIncrOk = 0;
4424
4425
4426
4427
4428
4429
4430
4431

4432
4433
4434

4435
4436
4437
4438
4439

4440
4441
4442
4443
4444
4445
4446
4511
4512
4513
4514
4515
4516
4517

4518
4519
4520
4521
4522
4523
4524
4525
4526

4527
4528
4529
4530
4531
4532
4533
4534







-
+



+




-
+







*/
static void fts3EvalDlPhraseNext(
  Fts3Table *pTab,
  Fts3Doclist *pDL,
  u8 *pbEof
){
  char *pIter;                            /* Used to iterate through aAll */
  char *pEnd = &pDL->aAll[pDL->nAll];     /* 1 byte past end of aAll */
  char *pEnd;                             /* 1 byte past end of aAll */
 
  if( pDL->pNextDocid ){
    pIter = pDL->pNextDocid;
    assert( pDL->aAll!=0 || pIter==0 );
  }else{
    pIter = pDL->aAll;
  }

  if( pIter>=pEnd ){
  if( pIter==0 || pIter>=(pEnd = pDL->aAll + pDL->nAll) ){
    /* We have already reached the end of this doclist. EOF. */
    *pbEof = 1;
  }else{
    sqlite3_int64 iDelta;
    pIter += sqlite3Fts3GetVarint(pIter, &iDelta);
    if( pTab->bDescIdx==0 || pDL->pNextDocid==0 ){
      pDL->iDocid += iDelta;
4593
4594
4595
4596
4597
4598
4599
4600

4601
4602

4603
4604
4605
4606
4607
4608
4609
4681
4682
4683
4684
4685
4686
4687

4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698







-
+


+







        }
      }

      /* Check if the current entries really are a phrase match */
      if( bEof==0 ){
        int nList = 0;
        int nByte = a[p->nToken-1].nList;
        char *aDoclist = sqlite3_malloc(nByte+1);
        char *aDoclist = sqlite3_malloc(nByte+FTS3_BUFFER_PADDING);
        if( !aDoclist ) return SQLITE_NOMEM;
        memcpy(aDoclist, a[p->nToken-1].pList, nByte+1);
        memset(&aDoclist[nByte], 0, FTS3_BUFFER_PADDING);

        for(i=0; i<(p->nToken-1); i++){
          if( a[i].bIgnore==0 ){
            char *pL = a[i].pList;
            char *pR = aDoclist;
            char *pOut = aDoclist;
            int nDist = p->nToken-1-i;
4803
4804
4805
4806
4807
4808
4809

4810

4811
4812
4813
4814
4815





4816
4817
4818
4819
4820
4821
4822
4892
4893
4894
4895
4896
4897
4898
4899

4900





4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912







+
-
+
-
-
-
-
-
+
+
+
+
+







    sqlite3_int64 nByte = 0;
    const char *pEnd;
    const char *a;

    rc = sqlite3Fts3SelectDoctotal(p, &pStmt);
    if( rc!=SQLITE_OK ) return rc;
    a = sqlite3_column_blob(pStmt, 0);
    testcase( a==0 );  /* If %_stat.value set to X'' */
    assert( a );
    if( a ){

    pEnd = &a[sqlite3_column_bytes(pStmt, 0)];
    a += sqlite3Fts3GetVarint(a, &nDoc);
    while( a<pEnd ){
      a += sqlite3Fts3GetVarint(a, &nByte);
      pEnd = &a[sqlite3_column_bytes(pStmt, 0)];
      a += sqlite3Fts3GetVarintBounded(a, pEnd, &nDoc);
      while( a<pEnd ){
        a += sqlite3Fts3GetVarintBounded(a, pEnd, &nByte);
      }
    }
    if( nDoc==0 || nByte==0 ){
      sqlite3_reset(pStmt);
      return FTS_CORRUPT_VTAB;
    }

    pCsr->nDoc = nDoc;
4986
4987
4988
4989
4990
4991
4992
4993

4994
4995
4996
4997
4998
4999
5000
5076
5077
5078
5079
5080
5081
5082

5083
5084
5085
5086
5087
5088
5089
5090







-
+







  fts3EvalAllocateReaders(pCsr, pCsr->pExpr, &nToken, &nOr, &rc);

  /* Determine which, if any, tokens in the expression should be deferred. */
#ifndef SQLITE_DISABLE_FTS4_DEFERRED
  if( rc==SQLITE_OK && nToken>1 && pTab->bFts4 ){
    Fts3TokenAndCost *aTC;
    Fts3Expr **apOr;
    aTC = (Fts3TokenAndCost *)sqlite3_malloc(
    aTC = (Fts3TokenAndCost *)sqlite3_malloc64(
        sizeof(Fts3TokenAndCost) * nToken
      + sizeof(Fts3Expr *) * nOr * 2
    );
    apOr = (Fts3Expr **)&aTC[nToken];

    if( !aTC ){
      rc = SQLITE_NOMEM;
5297
5298
5299
5300
5301
5302
5303
5304

5305
5306
5307
5308
5309
5310
5311
5312
5313

5314
5315
5316
5317
5318
5319
5320
5387
5388
5389
5390
5391
5392
5393

5394
5395
5396
5397
5398
5399
5400
5401
5402

5403
5404
5405
5406
5407
5408
5409
5410







-
+








-
+







  ** no exceptions to this - it's the way the parser in fts3_expr.c works.
  */
  if( *pRc==SQLITE_OK 
   && pExpr->eType==FTSQUERY_NEAR 
   && (pExpr->pParent==0 || pExpr->pParent->eType!=FTSQUERY_NEAR)
  ){
    Fts3Expr *p; 
    int nTmp = 0;                 /* Bytes of temp space */
    sqlite3_int64 nTmp = 0;       /* Bytes of temp space */
    char *aTmp;                   /* Temp space for PoslistNearMerge() */

    /* Allocate temporary working space. */
    for(p=pExpr; p->pLeft; p=p->pLeft){
      assert( p->pRight->pPhrase->doclist.nList>0 );
      nTmp += p->pRight->pPhrase->doclist.nList;
    }
    nTmp += p->pPhrase->doclist.nList;
    aTmp = sqlite3_malloc(nTmp*2);
    aTmp = sqlite3_malloc64(nTmp*2);
    if( !aTmp ){
      *pRc = SQLITE_NOMEM;
      res = 0;
    }else{
      char *aPoslist = p->pPhrase->doclist.pList;
      int nToken = p->pPhrase->nToken;

5576
5577
5578
5579
5580
5581
5582
5583

5584
5585
5586
5587
5588
5589
5590
5591

5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607

5608
5609
5610
5611


5612
5613
5614
5615
5616
5617
5618
5666
5667
5668
5669
5670
5671
5672

5673
5674
5675
5676
5677
5678
5679


5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695

5696
5697
5698


5699
5700
5701
5702
5703
5704
5705
5706
5707







-
+






-
-
+















-
+


-
-
+
+







** After allocating the Fts3Expr.aMI[] array for each phrase in the 
** expression rooted at pExpr, the cursor iterates through all rows matched
** by pExpr, calling this function for each row. This function increments
** the values in Fts3Expr.aMI[] according to the position-list currently
** found in Fts3Expr.pPhrase->doclist.pList for each of the phrase 
** expression nodes.
*/
static void fts3EvalUpdateCounts(Fts3Expr *pExpr){
static void fts3EvalUpdateCounts(Fts3Expr *pExpr, int nCol){
  if( pExpr ){
    Fts3Phrase *pPhrase = pExpr->pPhrase;
    if( pPhrase && pPhrase->doclist.pList ){
      int iCol = 0;
      char *p = pPhrase->doclist.pList;

      assert( *p );
      while( 1 ){
      do{
        u8 c = 0;
        int iCnt = 0;
        while( 0xFE & (*p | c) ){
          if( (c&0x80)==0 ) iCnt++;
          c = *p++ & 0x80;
        }

        /* aMI[iCol*3 + 1] = Number of occurrences
        ** aMI[iCol*3 + 2] = Number of rows containing at least one instance
        */
        pExpr->aMI[iCol*3 + 1] += iCnt;
        pExpr->aMI[iCol*3 + 2] += (iCnt>0);
        if( *p==0x00 ) break;
        p++;
        p += fts3GetVarint32(p, &iCol);
      }
      }while( iCol<nCol );
    }

    fts3EvalUpdateCounts(pExpr->pLeft);
    fts3EvalUpdateCounts(pExpr->pRight);
    fts3EvalUpdateCounts(pExpr->pLeft, nCol);
    fts3EvalUpdateCounts(pExpr->pRight, nCol);
  }
}

/*
** Expression pExpr must be of type FTSQUERY_PHRASE.
**
** If it is not already allocated and populated, this function allocates and
5648
5649
5650
5651
5652
5653
5654
5655

5656
5657
5658
5659
5660
5661
5662
5737
5738
5739
5740
5741
5742
5743

5744
5745
5746
5747
5748
5749
5750
5751







-
+







    bEof = pRoot->bEof;
    assert( pRoot->bStart );

    /* Allocate space for the aMSI[] array of each FTSQUERY_PHRASE node */
    for(p=pRoot; p; p=p->pLeft){
      Fts3Expr *pE = (p->eType==FTSQUERY_PHRASE?p:p->pRight);
      assert( pE->aMI==0 );
      pE->aMI = (u32 *)sqlite3_malloc(pTab->nColumn * 3 * sizeof(u32));
      pE->aMI = (u32 *)sqlite3_malloc64(pTab->nColumn * 3 * sizeof(u32));
      if( !pE->aMI ) return SQLITE_NOMEM;
      memset(pE->aMI, 0, pTab->nColumn * 3 * sizeof(u32));
    }

    fts3EvalRestart(pCsr, pRoot, &rc);

    while( pCsr->isEof==0 && rc==SQLITE_OK ){
5674
5675
5676
5677
5678
5679
5680
5681

5682
5683
5684
5685
5686
5687
5688
5763
5764
5765
5766
5767
5768
5769

5770
5771
5772
5773
5774
5775
5776
5777







-
+







        pCsr->iPrevId = pRoot->iDocid;
      }while( pCsr->isEof==0 
           && pRoot->eType==FTSQUERY_NEAR 
           && sqlite3Fts3EvalTestDeferred(pCsr, &rc) 
      );

      if( rc==SQLITE_OK && pCsr->isEof==0 ){
        fts3EvalUpdateCounts(pRoot);
        fts3EvalUpdateCounts(pRoot, pTab->nColumn);
      }
    }

    pCsr->isEof = 0;
    pCsr->iPrevId = iPrevId;

    if( bEof ){

Changes to ext/fts3/fts3Int.h.

91
92
93
94
95
96
97


98
99
100
101
102
103
104
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106







+
+








/*
** Maximum length of a varint encoded integer. The varint format is different
** from that used by SQLite, so the maximum length is 10, not 9.
*/
#define FTS3_VARINT_MAX 10

#define FTS3_BUFFER_PADDING 8

/*
** FTS4 virtual tables may maintain multiple indexes - one index of all terms
** in the document set and zero or more prefix indexes. All indexes are stored
** as one or more b+-trees in the %_segments and %_segdir tables. 
**
** It is possible to determine which index a b+-tree belongs to based on the
** value stored in the "%_segdir.level" column. Given this value L, the index
123
124
125
126
127
128
129












130
131
132
133
134
135
136
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150







+
+
+
+
+
+
+
+
+
+
+
+








/*
** Terminator values for position-lists and column-lists.
*/
#define POS_COLUMN  (1)     /* Column-list terminator */
#define POS_END     (0)     /* Position-list terminator */ 

/*
** The assert_fts3_nc() macro is similar to the assert() macro, except that it
** is used for assert() conditions that are true only if it can be 
** guranteed that the database is not corrupt.
*/
#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
extern int sqlite3_fts3_may_be_corrupt;
# define assert_fts3_nc(x) assert(sqlite3_fts3_may_be_corrupt || (x))
#else
# define assert_fts3_nc(x) assert(x)
#endif

/*
** This section provides definitions to allow the
** FTS3 extension to be compiled outside of the 
** amalgamation.
*/
#ifndef SQLITE_AMALGAMATION
/*
178
179
180
181
182
183
184



185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208







+
+
+







*/
#if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
# define TESTONLY(X)  X
#else
# define TESTONLY(X)
#endif

#define LARGEST_INT64  (0xffffffff|(((i64)0x7fffffff)<<32))
#define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64)

#endif /* SQLITE_AMALGAMATION */

#ifdef SQLITE_DEBUG
int sqlite3Fts3Corrupt(void);
# define FTS_CORRUPT_VTAB sqlite3Fts3Corrupt()
#else
# define FTS_CORRUPT_VTAB SQLITE_CORRUPT_VTAB
221
222
223
224
225
226
227

228
229
230
231
232
233
234
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252







+







  char **azColumn;                /* column names.  malloced */
  u8 *abNotindexed;               /* True for 'notindexed' columns */
  sqlite3_tokenizer *pTokenizer;  /* tokenizer for inserts and queries */
  char *zContentTbl;              /* content=xxx option, or NULL */
  char *zLanguageid;              /* languageid=xxx option, or NULL */
  int nAutoincrmerge;             /* Value configured by 'automerge' */
  u32 nLeafAdd;                   /* Number of leaf blocks added this trans */
  int bLock;                      /* Used to prevent recursive content= tbls */

  /* Precompiled statements used by the implementation. Each of these 
  ** statements is run and reset within a single virtual table API call. 
  */
  sqlite3_stmt *aStmt[40];
  sqlite3_stmt *pSeekStmt;        /* Cache for fts3CursorSeekStmt() */

279
280
281
282
283
284
285
286

287
288
289



290
291







292
293
294
295
296
297
298
297
298
299
300
301
302
303

304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326







-
+



+
+
+


+
+
+
+
+
+
+







  ** values do not contribute to FTS functionality; they are used for
  ** verifying the operation of the SQLite core.
  */
  int inTransaction;     /* True after xBegin but before xCommit/xRollback */
  int mxSavepoint;       /* Largest valid xSavepoint integer */
#endif

#ifdef SQLITE_TEST
#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
  /* True to disable the incremental doclist optimization. This is controled
  ** by special insert command 'test-no-incr-doclist'.  */
  int bNoIncrDoclist;

  /* Number of segments in a level */
  int nMergeCount;
#endif
};

/* Macro to find the number of segments to merge */
#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
# define MergeCount(P) ((P)->nMergeCount)
#else
# define MergeCount(P) FTS3_MERGE_COUNT
#endif

/*
** When the core wants to read from the virtual table, it creates a
** virtual table cursor (an instance of the following structure) using
** the xOpen method. Cursors are destroyed using the xClose method.
*/
struct Fts3Cursor {
549
550
551
552
553
554
555


556
557
558
559
560
561
562
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592







+
+







  (*(u8*)(p)&0x80) ? sqlite3Fts3GetVarint32(p, piVal) : (*piVal=*(u8*)(p), 1) \
)

/* fts3.c */
void sqlite3Fts3ErrMsg(char**,const char*,...);
int sqlite3Fts3PutVarint(char *, sqlite3_int64);
int sqlite3Fts3GetVarint(const char *, sqlite_int64 *);
int sqlite3Fts3GetVarintU(const char *, sqlite_uint64 *);
int sqlite3Fts3GetVarintBounded(const char*,const char*,sqlite3_int64*);
int sqlite3Fts3GetVarint32(const char *, int *);
int sqlite3Fts3VarintLen(sqlite3_uint64);
void sqlite3Fts3Dequote(char *);
void sqlite3Fts3DoclistPrev(int,char*,int,char**,sqlite3_int64*,int*,u8*);
int sqlite3Fts3EvalPhraseStats(Fts3Cursor *, Fts3Expr *, u32 *);
int sqlite3Fts3FirstFilter(sqlite3_int64, char *, int, char *);
void sqlite3Fts3CreateStatTable(int*, Fts3Table*);
580
581
582
583
584
585
586
587

588
589
590
591
592
593
594
610
611
612
613
614
615
616

617
618
619
620
621
622
623
624







-
+








/* fts3_expr.c */
int sqlite3Fts3ExprParse(sqlite3_tokenizer *, int,
  char **, int, int, int, const char *, int, Fts3Expr **, char **
);
void sqlite3Fts3ExprFree(Fts3Expr *);
#ifdef SQLITE_TEST
int sqlite3Fts3ExprInitTestInterface(sqlite3 *db);
int sqlite3Fts3ExprInitTestInterface(sqlite3 *db, Fts3Hash*);
int sqlite3Fts3InitTerm(sqlite3 *db);
#endif

int sqlite3Fts3OpenTokenizer(sqlite3_tokenizer *, int, const char *, int,
  sqlite3_tokenizer_cursor **
);

Changes to ext/fts3/fts3_aux.c.

62
63
64
65
66
67
68
69

70
71
72
73
74
75
76
62
63
64
65
66
67
68

69
70
71
72
73
74
75
76







-
+







  sqlite3_vtab **ppVtab,          /* OUT: New sqlite3_vtab object */
  char **pzErr                    /* OUT: sqlite3_malloc'd error message */
){
  char const *zDb;                /* Name of database (e.g. "main") */
  char const *zFts3;              /* Name of fts3 table */
  int nDb;                        /* Result of strlen(zDb) */
  int nFts3;                      /* Result of strlen(zFts3) */
  int nByte;                      /* Bytes of space to allocate here */
  sqlite3_int64 nByte;            /* Bytes of space to allocate here */
  int rc;                         /* value returned by declare_vtab() */
  Fts3auxTable *p;                /* Virtual table object to return */

  UNUSED_PARAMETER(pUnused);

  /* The user should invoke this in one of two forms:
  **
94
95
96
97
98
99
100
101

102
103
104
105
106
107
108
94
95
96
97
98
99
100

101
102
103
104
105
106
107
108







-
+







  }
  nFts3 = (int)strlen(zFts3);

  rc = sqlite3_declare_vtab(db, FTS3_AUX_SCHEMA);
  if( rc!=SQLITE_OK ) return rc;

  nByte = sizeof(Fts3auxTable) + sizeof(Fts3Table) + nDb + nFts3 + 2;
  p = (Fts3auxTable *)sqlite3_malloc(nByte);
  p = (Fts3auxTable *)sqlite3_malloc64(nByte);
  if( !p ) return SQLITE_NOMEM;
  memset(p, 0, nByte);

  p->pFts3Tab = (Fts3Table *)&p[1];
  p->pFts3Tab->zDb = (char *)&p->pFts3Tab[1];
  p->pFts3Tab->zName = &p->pFts3Tab->zDb[nDb+1];
  p->pFts3Tab->db = db;
244
245
246
247
248
249
250
251

252
253
254
255
256
257
258
244
245
246
247
248
249
250

251
252
253
254
255
256
257
258







-
+







  sqlite3_free(pCsr);
  return SQLITE_OK;
}

static int fts3auxGrowStatArray(Fts3auxCursor *pCsr, int nSize){
  if( nSize>pCsr->nStat ){
    struct Fts3auxColstats *aNew;
    aNew = (struct Fts3auxColstats *)sqlite3_realloc(pCsr->aStat, 
    aNew = (struct Fts3auxColstats *)sqlite3_realloc64(pCsr->aStat, 
        sizeof(struct Fts3auxColstats) * nSize
    );
    if( aNew==0 ) return SQLITE_NOMEM;
    memset(&aNew[pCsr->nStat], 0, 
        sizeof(struct Fts3auxColstats) * (nSize - pCsr->nStat)
    );
    pCsr->aStat = aNew;
412
413
414
415
416
417
418
419
420

421
422
423
424
425
426
427

428
429
430
431
432
433
434
412
413
414
415
416
417
418

419
420
421
422
423
424
425

426
427
428
429
430
431
432
433
434







-

+





-

+







  if( isScan ) pCsr->filter.flags |= FTS3_SEGMENT_SCAN;

  if( iEq>=0 || iGe>=0 ){
    const unsigned char *zStr = sqlite3_value_text(apVal[0]);
    assert( (iEq==0 && iGe==-1) || (iEq==-1 && iGe==0) );
    if( zStr ){
      pCsr->filter.zTerm = sqlite3_mprintf("%s", zStr);
      pCsr->filter.nTerm = sqlite3_value_bytes(apVal[0]);
      if( pCsr->filter.zTerm==0 ) return SQLITE_NOMEM;
      pCsr->filter.nTerm = (int)strlen(pCsr->filter.zTerm);
    }
  }

  if( iLe>=0 ){
    pCsr->zStop = sqlite3_mprintf("%s", sqlite3_value_text(apVal[iLe]));
    pCsr->nStop = sqlite3_value_bytes(apVal[iLe]);
    if( pCsr->zStop==0 ) return SQLITE_NOMEM;
    pCsr->nStop = (int)strlen(pCsr->zStop);
  }
  
  if( iLangid>=0 ){
    iLangVal = sqlite3_value_int(apVal[iLangid]);

    /* If the user specified a negative value for the languageid, use zero
    ** instead. This works, as the "languageid=?" constraint will also
535
536
537
538
539
540
541
542

543
544
545
546
547
548
549
550
535
536
537
538
539
540
541

542
543
544
545
546
547
548
549
550







-
+








     0,                           /* xSync         */
     0,                           /* xCommit       */
     0,                           /* xRollback     */
     0,                           /* xFindFunction */
     0,                           /* xRename       */
     0,                           /* xSavepoint    */
     0,                           /* xRelease      */
     0                            /* xRollbackTo   */
     0,                           /* xRollbackTo   */
  };
  int rc;                         /* Return code */

  rc = sqlite3_create_module(db, "fts4aux", &fts3aux_module, 0);
  return rc;
}

#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */

Changes to ext/fts3/fts3_expr.c.

118
119
120
121
122
123
124
125
126


127
128
129
130
131
132
133
118
119
120
121
122
123
124


125
126
127
128
129
130
131
132
133







-
-
+
+







}

/*
** Allocate nByte bytes of memory using sqlite3_malloc(). If successful,
** zero the memory before returning a pointer to it. If unsuccessful, 
** return NULL.
*/
static void *fts3MallocZero(int nByte){
  void *pRet = sqlite3_malloc(nByte);
static void *fts3MallocZero(sqlite3_int64 nByte){
  void *pRet = sqlite3_malloc64(nByte);
  if( pRet ) memset(pRet, 0, nByte);
  return pRet;
}

int sqlite3Fts3OpenTokenizer(
  sqlite3_tokenizer *pTokenizer,
  int iLangid,
194
195
196
197
198
199
200
201

202
203
204
205
206
207
208
194
195
196
197
198
199
200

201
202
203
204
205
206
207
208







-
+







  }

  *pnConsumed = i;
  rc = sqlite3Fts3OpenTokenizer(pTokenizer, pParse->iLangid, z, i, &pCursor);
  if( rc==SQLITE_OK ){
    const char *zToken;
    int nToken = 0, iStart = 0, iEnd = 0, iPosition = 0;
    int nByte;                               /* total space to allocate */
    sqlite3_int64 nByte;                    /* total space to allocate */

    rc = pModule->xNext(pCursor, &zToken, &nToken, &iStart, &iEnd, &iPosition);
    if( rc==SQLITE_OK ){
      nByte = sizeof(Fts3Expr) + sizeof(Fts3Phrase) + nToken;
      pRet = (Fts3Expr *)fts3MallocZero(nByte);
      if( !pRet ){
        rc = SQLITE_NOMEM;
248
249
250
251
252
253
254
255
256


257
258
259
260
261
262
263
248
249
250
251
252
253
254


255
256
257
258
259
260
261
262
263







-
-
+
+







}


/*
** Enlarge a memory allocation.  If an out-of-memory allocation occurs,
** then free the old allocation.
*/
static void *fts3ReallocOrFree(void *pOrig, int nNew){
  void *pRet = sqlite3_realloc(pOrig, nNew);
static void *fts3ReallocOrFree(void *pOrig, sqlite3_int64 nNew){
  void *pRet = sqlite3_realloc64(pOrig, nNew);
  if( !pRet ){
    sqlite3_free(pOrig);
  }
  return pRet;
}

/*
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
493
494
495
496
497
498
499

500
501
502
503
504
505
506







-







  }

  if( sqlite3_fts3_enable_parentheses ){
    if( *zInput=='(' ){
      int nConsumed = 0;
      pParse->nNest++;
      rc = fts3ExprParse(pParse, zInput+1, nInput-1, ppExpr, &nConsumed);
      if( rc==SQLITE_OK && !*ppExpr ){ rc = SQLITE_DONE; }
      *pnConsumed = (int)(zInput - z) + 1 + nConsumed;
      return rc;
    }else if( *zInput==')' ){
      pParse->nNest--;
      *pnConsumed = (int)((zInput - z) + 1);
      *ppExpr = 0;
      return SQLITE_DONE;
792
793
794
795
796
797
798
799

800
801
802
803
804
805
806
791
792
793
794
795
796
797

798
799
800
801
802
803
804
805







-
+







  if( nMaxDepth==0 ){
    rc = SQLITE_ERROR;
  }

  if( rc==SQLITE_OK ){
    if( (eType==FTSQUERY_AND || eType==FTSQUERY_OR) ){
      Fts3Expr **apLeaf;
      apLeaf = (Fts3Expr **)sqlite3_malloc(sizeof(Fts3Expr *) * nMaxDepth);
      apLeaf = (Fts3Expr **)sqlite3_malloc64(sizeof(Fts3Expr *) * nMaxDepth);
      if( 0==apLeaf ){
        rc = SQLITE_NOMEM;
      }else{
        memset(apLeaf, 0, sizeof(Fts3Expr *) * nMaxDepth);
      }

      if( rc==SQLITE_OK ){
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1103
1104
1105
1106
1107
1108
1109




























1110
1111
1112
1113
1114
1115
1116







-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-







** Everything after this point is just test code.
*/

#ifdef SQLITE_TEST

#include <stdio.h>

/*
** Function to query the hash-table of tokenizers (see README.tokenizers).
*/
static int queryTestTokenizer(
  sqlite3 *db, 
  const char *zName,  
  const sqlite3_tokenizer_module **pp
){
  int rc;
  sqlite3_stmt *pStmt;
  const char zSql[] = "SELECT fts3_tokenizer(?)";

  *pp = 0;
  rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
  if( rc!=SQLITE_OK ){
    return rc;
  }

  sqlite3_bind_text(pStmt, 1, zName, -1, SQLITE_STATIC);
  if( SQLITE_ROW==sqlite3_step(pStmt) ){
    if( sqlite3_column_type(pStmt, 0)==SQLITE_BLOB ){
      memcpy((void *)pp, sqlite3_column_blob(pStmt, 0), sizeof(*pp));
    }
  }

  return sqlite3_finalize(pStmt);
}

/*
** Return a pointer to a buffer containing a text representation of the
** expression passed as the first argument. The buffer is obtained from
** sqlite3_malloc(). It is the responsibility of the caller to use 
** sqlite3_free() to release the memory. If an OOM condition is encountered,
** NULL is returned.
**
1199
1200
1201
1202
1203
1204
1205
1206


1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221



1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233





1234
1235
1236


1237
1238
1239


1240
1241
1242
1243

1244
1245
1246
1247
1248
1249
1250
1251

1252
1253
1254
1255
1256
1257
1258
1259
1260

1261
1262
1263
1264
1265
1266
1267
1170
1171
1172
1173
1174
1175
1176

1177
1178
1179
1180
1181
1182

1183
1184
1185
1186
1187
1188
1189
1190
1191

1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202




1203
1204
1205
1206
1207



1208
1209



1210
1211




1212

1213

1214
1215
1216
1217

1218
1219
1220
1221
1222
1223
1224
1225
1226

1227
1228
1229
1230
1231
1232
1233
1234







-
+
+




-









-
+
+
+








-
-
-
-
+
+
+
+
+
-
-
-
+
+
-
-
-
+
+
-
-
-
-
+
-

-




-
+








-
+







** to parse the query expression (see README.tokenizers). The second argument
** is the query expression to parse. Each subsequent argument is the name
** of a column of the fts3 table that the query expression may refer to.
** For example:
**
**   SELECT fts3_exprtest('simple', 'Bill col2:Bloggs', 'col1', 'col2');
*/
static void fts3ExprTest(
static void fts3ExprTestCommon(
  int bRebalance,
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  sqlite3_tokenizer_module const *pModule = 0;
  sqlite3_tokenizer *pTokenizer = 0;
  int rc;
  char **azCol = 0;
  const char *zExpr;
  int nExpr;
  int nCol;
  int ii;
  Fts3Expr *pExpr;
  char *zBuf = 0;
  sqlite3 *db = sqlite3_context_db_handle(context);
  Fts3Hash *pHash = (Fts3Hash*)sqlite3_user_data(context);
  const char *zTokenizer = 0;
  char *zErr = 0;

  if( argc<3 ){
    sqlite3_result_error(context, 
        "Usage: fts3_exprtest(tokenizer, expr, col1, ...", -1
    );
    return;
  }

  rc = queryTestTokenizer(db,
                          (const char *)sqlite3_value_text(argv[0]), &pModule);
  if( rc==SQLITE_NOMEM ){
    sqlite3_result_error_nomem(context);
  zTokenizer = (const char*)sqlite3_value_text(argv[0]);
  rc = sqlite3Fts3InitTokenizer(pHash, zTokenizer, &pTokenizer, &zErr);
  if( rc!=SQLITE_OK ){
    if( rc==SQLITE_NOMEM ){
      sqlite3_result_error_nomem(context);
    goto exprtest_out;
  }else if( !pModule ){
    sqlite3_result_error(context, "No such tokenizer module", -1);
    }else{
      sqlite3_result_error(context, zErr, -1);
    goto exprtest_out;
  }

    }
    sqlite3_free(zErr);
  rc = pModule->xCreate(0, 0, &pTokenizer);
  assert( rc==SQLITE_NOMEM || rc==SQLITE_OK );
  if( rc==SQLITE_NOMEM ){
    sqlite3_result_error_nomem(context);
    return;
    goto exprtest_out;
  }
  pTokenizer->pModule = pModule;

  zExpr = (const char *)sqlite3_value_text(argv[1]);
  nExpr = sqlite3_value_bytes(argv[1]);
  nCol = argc-2;
  azCol = (char **)sqlite3_malloc(nCol*sizeof(char *));
  azCol = (char **)sqlite3_malloc64(nCol*sizeof(char *));
  if( !azCol ){
    sqlite3_result_error_nomem(context);
    goto exprtest_out;
  }
  for(ii=0; ii<nCol; ii++){
    azCol[ii] = (char *)sqlite3_value_text(argv[ii+2]);
  }

  if( sqlite3_user_data(context) ){
  if( bRebalance ){
    char *zDummy = 0;
    rc = sqlite3Fts3ExprParse(
        pTokenizer, 0, azCol, 0, nCol, nCol, zExpr, nExpr, &pExpr, &zDummy
    );
    assert( rc==SQLITE_OK || pExpr==0 );
    sqlite3_free(zDummy);
  }else{
1279
1280
1281
1282
1283
1284
1285
1286
1287


1288
1289
1290















1291
1292
1293
1294
1295
1296

1297
1298

1299
1300
1301
1302

1303
1304
1305
1306
1307
1308
1309
1246
1247
1248
1249
1250
1251
1252


1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277

1278
1279

1280
1281
1282
1283

1284
1285
1286
1287
1288
1289
1290
1291







-
-
+
+



+
+
+
+
+
+
+
+
+
+
+
+
+
+
+





-
+

-
+



-
+







    sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
    sqlite3_free(zBuf);
  }

  sqlite3Fts3ExprFree(pExpr);

exprtest_out:
  if( pModule && pTokenizer ){
    rc = pModule->xDestroy(pTokenizer);
  if( pTokenizer ){
    rc = pTokenizer->pModule->xDestroy(pTokenizer);
  }
  sqlite3_free(azCol);
}

static void fts3ExprTest(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  fts3ExprTestCommon(0, context, argc, argv);
}
static void fts3ExprTestRebalance(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  fts3ExprTestCommon(1, context, argc, argv);
}

/*
** Register the query expression parser test function fts3_exprtest() 
** with database connection db. 
*/
int sqlite3Fts3ExprInitTestInterface(sqlite3* db){
int sqlite3Fts3ExprInitTestInterface(sqlite3 *db, Fts3Hash *pHash){
  int rc = sqlite3_create_function(
      db, "fts3_exprtest", -1, SQLITE_UTF8, 0, fts3ExprTest, 0, 0
      db, "fts3_exprtest", -1, SQLITE_UTF8, (void*)pHash, fts3ExprTest, 0, 0
  );
  if( rc==SQLITE_OK ){
    rc = sqlite3_create_function(db, "fts3_exprtest_rebalance", 
        -1, SQLITE_UTF8, (void *)1, fts3ExprTest, 0, 0
        -1, SQLITE_UTF8, (void*)pHash, fts3ExprTestRebalance, 0, 0
    );
  }
  return rc;
}

#endif
#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */

Changes to ext/fts3/fts3_hash.c.

31
32
33
34
35
36
37
38
39


40
41
42
43
44
45
46
31
32
33
34
35
36
37


38
39
40
41
42
43
44
45
46







-
-
+
+







#include <string.h>

#include "fts3_hash.h"

/*
** Malloc and Free functions
*/
static void *fts3HashMalloc(int n){
  void *p = sqlite3_malloc(n);
static void *fts3HashMalloc(sqlite3_int64 n){
  void *p = sqlite3_malloc64(n);
  if( p ){
    memset(p, 0, n);
  }
  return p;
}
static void fts3HashFree(void *p){
  sqlite3_free(p);

Changes to ext/fts3/fts3_icu.c.

56
57
58
59
60
61
62
63

64
65
66
67
68
69
70
56
57
58
59
60
61
62

63
64
65
66
67
68
69
70







-
+







){
  IcuTokenizer *p;
  int n = 0;

  if( argc>0 ){
    n = strlen(argv[0])+1;
  }
  p = (IcuTokenizer *)sqlite3_malloc(sizeof(IcuTokenizer)+n);
  p = (IcuTokenizer *)sqlite3_malloc64(sizeof(IcuTokenizer)+n);
  if( !p ){
    return SQLITE_NOMEM;
  }
  memset(p, 0, sizeof(IcuTokenizer));

  if( n ){
    p->zLocale = (char *)&p[1];
113
114
115
116
117
118
119
120

121
122
123
124
125
126
127
113
114
115
116
117
118
119

120
121
122
123
124
125
126
127







-
+







  if( zInput==0 ){
    nInput = 0;
    zInput = "";
  }else if( nInput<0 ){
    nInput = strlen(zInput);
  }
  nChar = nInput+1;
  pCsr = (IcuCursor *)sqlite3_malloc(
  pCsr = (IcuCursor *)sqlite3_malloc64(
      sizeof(IcuCursor) +                /* IcuCursor */
      ((nChar+3)&~3) * sizeof(UChar) +   /* IcuCursor.aChar[] */
      (nChar+1) * sizeof(int)            /* IcuCursor.aOffset[] */
  );
  if( !pCsr ){
    return SQLITE_NOMEM;
  }

Changes to ext/fts3/fts3_snippet.c.

124
125
126
127
128
129
130
131

132

133
134


135
136

137
138
139
140
141



142
143
144
145
146
147
148
124
125
126
127
128
129
130

131
132
133


134
135
136

137
138
139
140


141
142
143
144
145
146
147
148
149
150







-
+

+
-
-
+
+

-
+



-
-
+
+
+







/*************************************************************************
** Start of MatchinfoBuffer code.
*/

/*
** Allocate a two-slot MatchinfoBuffer object.
*/
static MatchinfoBuffer *fts3MIBufferNew(int nElem, const char *zMatchinfo){
static MatchinfoBuffer *fts3MIBufferNew(size_t nElem, const char *zMatchinfo){
  MatchinfoBuffer *pRet;
  sqlite3_int64 nByte = sizeof(u32) * (2*(sqlite3_int64)nElem + 1)
  int nByte = sizeof(u32) * (2*nElem + 1) + sizeof(MatchinfoBuffer);
  int nStr = (int)strlen(zMatchinfo);
                           + sizeof(MatchinfoBuffer);
  sqlite3_int64 nStr = strlen(zMatchinfo);

  pRet = sqlite3_malloc(nByte + nStr+1);
  pRet = sqlite3_malloc64(nByte + nStr+1);
  if( pRet ){
    memset(pRet, 0, nByte);
    pRet->aMatchinfo[0] = (u8*)(&pRet->aMatchinfo[1]) - (u8*)pRet;
    pRet->aMatchinfo[1+nElem] = pRet->aMatchinfo[0] + sizeof(u32)*(nElem+1);
    pRet->nElem = nElem;
    pRet->aMatchinfo[1+nElem] = pRet->aMatchinfo[0]
                                      + sizeof(u32)*((int)nElem+1);
    pRet->nElem = (int)nElem;
    pRet->zMatchinfo = ((char*)pRet) + nByte;
    memcpy(pRet->zMatchinfo, zMatchinfo, nStr+1);
    pRet->aRef[0] = 1;
  }

  return pRet;
}
174
175
176
177
178
179
180
181

182
183
184
185
186
187
188
176
177
178
179
180
181
182

183
184
185
186
187
188
189
190







-
+







    xRet = fts3MIBufferFree;
  }
  else if( p->aRef[2]==0 ){
    p->aRef[2] = 1;
    aOut = &p->aMatchinfo[p->nElem+2];
    xRet = fts3MIBufferFree;
  }else{
    aOut = (u32*)sqlite3_malloc(p->nElem * sizeof(u32));
    aOut = (u32*)sqlite3_malloc64(p->nElem * sizeof(u32));
    if( aOut ){
      xRet = sqlite3_free;
      if( p->bGlobal ) memcpy(aOut, &p->aMatchinfo[1], p->nElem*sizeof(u32));
    }
  }

  *paOut = aOut;
425
426
427
428
429
430
431
432

433
434

435
436


437
438
439
440
441
442
443
427
428
429
430
431
432
433

434
435

436
437

438
439
440
441
442
443
444
445
446







-
+

-
+

-
+
+








  for(i=0; i<pIter->nPhrase; i++){
    SnippetPhrase *pPhrase = &pIter->aPhrase[i];
    if( pPhrase->pTail ){
      char *pCsr = pPhrase->pTail;
      int iCsr = pPhrase->iTail;

      while( iCsr<(iStart+pIter->nSnippet) ){
      while( iCsr<(iStart+pIter->nSnippet) && iCsr>=iStart ){
        int j;
        u64 mPhrase = (u64)1 << i;
        u64 mPhrase = (u64)1 << (i%64);
        u64 mPos = (u64)1 << (iCsr - iStart);
        assert( iCsr>=iStart );
        assert( iCsr>=iStart && (iCsr - iStart)<=64 );
        assert( i>=0 );
        if( (mCover|mCovered)&mPhrase ){
          iScore++;
        }else{
          iScore += 1000;
        }
        mCover |= mPhrase;

471
472
473
474
475
476
477
478
479
480
481
482








483
484
485
486
487
488
489
474
475
476
477
478
479
480





481
482
483
484
485
486
487
488
489
490
491
492
493
494
495







-
-
-
-
-
+
+
+
+
+
+
+
+







  pPhrase->nToken = pExpr->pPhrase->nToken;
  rc = sqlite3Fts3EvalPhrasePoslist(p->pCsr, pExpr, p->iCol, &pCsr);
  assert( rc==SQLITE_OK || pCsr==0 );
  if( pCsr ){
    int iFirst = 0;
    pPhrase->pList = pCsr;
    fts3GetDeltaPosition(&pCsr, &iFirst);
    assert( iFirst>=0 );
    pPhrase->pHead = pCsr;
    pPhrase->pTail = pCsr;
    pPhrase->iHead = iFirst;
    pPhrase->iTail = iFirst;
    if( iFirst<0 ){
      rc = FTS_CORRUPT_VTAB;
    }else{
      pPhrase->pHead = pCsr;
      pPhrase->pTail = pCsr;
      pPhrase->iHead = iFirst;
      pPhrase->iTail = iFirst;
    }
  }else{
    assert( rc!=SQLITE_OK || (
       pPhrase->pList==0 && pPhrase->pHead==0 && pPhrase->pTail==0 
    ));
  }

  return rc;
512
513
514
515
516
517
518
519

520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537

538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557

558
559
560
561
562
563
564
518
519
520
521
522
523
524

525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542

543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562

563
564
565
566
567
568
569
570







-
+

















-
+



















-
+







  u64 *pmSeen,                    /* IN/OUT: Mask of phrases seen */
  SnippetFragment *pFragment,     /* OUT: Best snippet found */
  int *piScore                    /* OUT: Score of snippet pFragment */
){
  int rc;                         /* Return Code */
  int nList;                      /* Number of phrases in expression */
  SnippetIter sIter;              /* Iterates through snippet candidates */
  int nByte;                      /* Number of bytes of space to allocate */
  sqlite3_int64 nByte;            /* Number of bytes of space to allocate */
  int iBestScore = -1;            /* Best snippet score found so far */
  int i;                          /* Loop counter */

  memset(&sIter, 0, sizeof(sIter));

  /* Iterate through the phrases in the expression to count them. The same
  ** callback makes sure the doclists are loaded for each phrase.
  */
  rc = fts3ExprLoadDoclists(pCsr, &nList, 0);
  if( rc!=SQLITE_OK ){
    return rc;
  }

  /* Now that it is known how many phrases there are, allocate and zero
  ** the required space using malloc().
  */
  nByte = sizeof(SnippetPhrase) * nList;
  sIter.aPhrase = (SnippetPhrase *)sqlite3_malloc(nByte);
  sIter.aPhrase = (SnippetPhrase *)sqlite3_malloc64(nByte);
  if( !sIter.aPhrase ){
    return SQLITE_NOMEM;
  }
  memset(sIter.aPhrase, 0, nByte);

  /* Initialize the contents of the SnippetIter object. Then iterate through
  ** the set of phrases in the expression to populate the aPhrase[] array.
  */
  sIter.pCsr = pCsr;
  sIter.iCol = iCol;
  sIter.nSnippet = nSnippet;
  sIter.nPhrase = nList;
  sIter.iCurrent = -1;
  rc = fts3ExprIterate(pCsr->pExpr, fts3SnippetFindPositions, (void*)&sIter);
  if( rc==SQLITE_OK ){

    /* Set the *pmSeen output variable. */
    for(i=0; i<nList; i++){
      if( sIter.aPhrase[i].pHead ){
        *pmSeen |= (u64)1 << i;
        *pmSeen |= (u64)1 << (i%64);
      }
    }

    /* Loop through all candidate snippets. Store the best snippet in 
     ** *pFragment. Store its associated 'score' in iBestScore.
     */
    pFragment->iCol = iCol;
600
601
602
603
604
605
606
607
608


609
610
611
612
613
614
615
606
607
608
609
610
611
612


613
614
615
616
617
618
619
620
621







-
-
+
+







  }

  /* If there is insufficient space allocated at StrBuffer.z, use realloc()
  ** to grow the buffer until so that it is big enough to accomadate the
  ** appended data.
  */
  if( pStr->n+nAppend+1>=pStr->nAlloc ){
    int nAlloc = pStr->nAlloc+nAppend+100;
    char *zNew = sqlite3_realloc(pStr->z, nAlloc);
    sqlite3_int64 nAlloc = pStr->nAlloc+(sqlite3_int64)nAppend+100;
    char *zNew = sqlite3_realloc64(pStr->z, nAlloc);
    if( !zNew ){
      return SQLITE_NOMEM;
    }
    pStr->z = zNew;
    pStr->nAlloc = nAlloc;
  }
  assert( pStr->z!=0 && (pStr->nAlloc >= pStr->n+nAppend+1) );
656
657
658
659
660
661
662

663
664
665
666
667
668
669
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676







+







  if( hlmask ){
    int nLeft;                    /* Tokens to the left of first highlight */
    int nRight;                   /* Tokens to the right of last highlight */
    int nDesired;                 /* Ideal number of tokens to shift forward */

    for(nLeft=0; !(hlmask & ((u64)1 << nLeft)); nLeft++);
    for(nRight=0; !(hlmask & ((u64)1 << (nSnippet-1-nRight))); nRight++);
    assert( (nSnippet-1-nRight)<=63 && (nSnippet-1-nRight)>=0 );
    nDesired = (nLeft-nRight)/2;

    /* Ideally, the start of the snippet should be pushed forward in the
    ** document nDesired tokens. This block checks if there are actually
    ** nDesired tokens to the right of the snippet. If so, *piPos and
    ** *pHlMask are updated to shift the snippet nDesired tokens to the
    ** right. Otherwise, the snippet is shifted by the number of tokens
848
849
850
851
852
853
854
855

856
857
858
859
860
861
862
855
856
857
858
859
860
861

862
863
864
865
866
867
868
869







-
+







  *ppCollist = pEnd;
  return nEntry;
}

/*
** This function gathers 'y' or 'b' data for a single phrase.
*/
static void fts3ExprLHits(
static int fts3ExprLHits(
  Fts3Expr *pExpr,                /* Phrase expression node */
  MatchInfo *p                    /* Matchinfo context */
){
  Fts3Table *pTab = (Fts3Table *)p->pCursor->base.pVtab;
  int iStart;
  Fts3Phrase *pPhrase = pExpr->pPhrase;
  char *pIter = pPhrase->doclist.pList;
878
879
880
881
882
883
884

885

886
887
888
889
890
891

892
893
894

895
896
897
898
899


900
901

902
903

904
905
906
907
908
909
910
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899

900
901
902
903
904
905
906
907


908
909
910

911
912
913
914
915
916
917
918
919
920
921







+

+





-
+



+



-
-
+
+

-
+


+







        p->aMatchinfo[iStart + (iCol+1)/32] |= (1 << (iCol&0x1F));
      }
    }
    assert( *pIter==0x00 || *pIter==0x01 );
    if( *pIter!=0x01 ) break;
    pIter++;
    pIter += fts3GetVarint32(pIter, &iCol);
    if( iCol>=p->nCol ) return FTS_CORRUPT_VTAB;
  }
  return SQLITE_OK;
}

/*
** Gather the results for matchinfo directives 'y' and 'b'.
*/
static void fts3ExprLHitGather(
static int fts3ExprLHitGather(
  Fts3Expr *pExpr,
  MatchInfo *p
){
  int rc = SQLITE_OK;
  assert( (pExpr->pLeft==0)==(pExpr->pRight==0) );
  if( pExpr->bEof==0 && pExpr->iDocid==p->pCursor->iPrevId ){
    if( pExpr->pLeft ){
      fts3ExprLHitGather(pExpr->pLeft, p);
      fts3ExprLHitGather(pExpr->pRight, p);
      rc = fts3ExprLHitGather(pExpr->pLeft, p);
      if( rc==SQLITE_OK ) rc = fts3ExprLHitGather(pExpr->pRight, p);
    }else{
      fts3ExprLHits(pExpr, p);
      rc = fts3ExprLHits(pExpr, p);
    }
  }
  return rc;
}

/*
** fts3ExprIterate() callback used to collect the "global" matchinfo stats
** for a single query. 
**
** fts3ExprIterate() callback to load the 'global' elements of a
986
987
988
989
990
991
992
993
994


995
996
997
998
999
1000
1001
997
998
999
1000
1001
1002
1003


1004
1005
1006
1007
1008
1009
1010
1011
1012







-
-
+
+







  ){
    return SQLITE_OK;
  }
  sqlite3Fts3ErrMsg(pzErr, "unrecognized matchinfo request: %c", cArg);
  return SQLITE_ERROR;
}

static int fts3MatchinfoSize(MatchInfo *pInfo, char cArg){
  int nVal;                       /* Number of integers output by cArg */
static size_t fts3MatchinfoSize(MatchInfo *pInfo, char cArg){
  size_t nVal;                      /* Number of integers output by cArg */

  switch( cArg ){
    case FTS3_MATCHINFO_NDOC:
    case FTS3_MATCHINFO_NPHRASE: 
    case FTS3_MATCHINFO_NCOL: 
      nVal = 1;
      break;
1023
1024
1025
1026
1027
1028
1029
1030


1031
1032
1033

1034


1035
1036
1037
1038
1039
1040
1041
1042

1043




1044
1045
1046





1047
1048

1049
1050
1051
1052
1053
1054
1055
1034
1035
1036
1037
1038
1039
1040

1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063



1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078







-
+
+



+

+
+








+

+
+
+
+
-
-
-
+
+
+
+
+


+







  return nVal;
}

static int fts3MatchinfoSelectDoctotal(
  Fts3Table *pTab,
  sqlite3_stmt **ppStmt,
  sqlite3_int64 *pnDoc,
  const char **paLen
  const char **paLen,
  const char **ppEnd
){
  sqlite3_stmt *pStmt;
  const char *a;
  const char *pEnd;
  sqlite3_int64 nDoc;
  int n;


  if( !*ppStmt ){
    int rc = sqlite3Fts3SelectDoctotal(pTab, ppStmt);
    if( rc!=SQLITE_OK ) return rc;
  }
  pStmt = *ppStmt;
  assert( sqlite3_data_count(pStmt)==1 );

  n = sqlite3_column_bytes(pStmt, 0);
  a = sqlite3_column_blob(pStmt, 0);
  if( a==0 ){
    return FTS_CORRUPT_VTAB;
  }
  pEnd = a + n;
  a += sqlite3Fts3GetVarint(a, &nDoc);
  if( nDoc==0 ) return FTS_CORRUPT_VTAB;
  *pnDoc = (u32)nDoc;
  a += sqlite3Fts3GetVarintBounded(a, pEnd, &nDoc);
  if( nDoc<=0 || a>pEnd ){
    return FTS_CORRUPT_VTAB;
  }
  *pnDoc = nDoc;

  if( paLen ) *paLen = a;
  if( ppEnd ) *ppEnd = pEnd;
  return SQLITE_OK;
}

/*
** An instance of the following structure is used to store state while 
** iterating through a multi-column position-list corresponding to the
** hits for a single phrase on a single row in order to calculate the
1113
1114
1115
1116
1117
1118
1119

1120
1121
1122
1123
1124

1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143

1144
1145
1146





1147
1148
1149
1150
1151
1152
1153
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147

1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163

1164
1165

1166
1167
1168

1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180







+




-
+















-


-
+


-
+
+
+
+
+







** undefined.
*/
static int fts3MatchinfoLcs(Fts3Cursor *pCsr, MatchInfo *pInfo){
  LcsIterator *aIter;
  int i;
  int iCol;
  int nToken = 0;
  int rc = SQLITE_OK;

  /* Allocate and populate the array of LcsIterator objects. The array
  ** contains one element for each matchable phrase in the query.
  **/
  aIter = sqlite3_malloc(sizeof(LcsIterator) * pCsr->nPhrase);
  aIter = sqlite3_malloc64(sizeof(LcsIterator) * pCsr->nPhrase);
  if( !aIter ) return SQLITE_NOMEM;
  memset(aIter, 0, sizeof(LcsIterator) * pCsr->nPhrase);
  (void)fts3ExprIterate(pCsr->pExpr, fts3MatchinfoLcsCb, (void*)aIter);

  for(i=0; i<pInfo->nPhrase; i++){
    LcsIterator *pIter = &aIter[i];
    nToken -= pIter->pExpr->pPhrase->nToken;
    pIter->iPosOffset = nToken;
  }

  for(iCol=0; iCol<pInfo->nCol; iCol++){
    int nLcs = 0;                 /* LCS value for this column */
    int nLive = 0;                /* Number of iterators in aIter not at EOF */

    for(i=0; i<pInfo->nPhrase; i++){
      int rc;
      LcsIterator *pIt = &aIter[i];
      rc = sqlite3Fts3EvalPhrasePoslist(pCsr, pIt->pExpr, iCol, &pIt->pRead);
      if( rc!=SQLITE_OK ) return rc;
      if( rc!=SQLITE_OK ) goto matchinfo_lcs_out;
      if( pIt->pRead ){
        pIt->iPos = pIt->iPosOffset;
        fts3LcsIteratorAdvance(&aIter[i]);
        fts3LcsIteratorAdvance(pIt);
        if( pIt->pRead==0 ){
          rc = FTS_CORRUPT_VTAB;
          goto matchinfo_lcs_out;
        }
        nLive++;
      }
    }

    while( nLive>0 ){
      LcsIterator *pAdv = 0;      /* The iterator to advance by one position */
      int nThisLcs = 0;           /* LCS for the current iterator positions */
1171
1172
1173
1174
1175
1176
1177

1178
1179

1180
1181
1182
1183
1184
1185
1186
1198
1199
1200
1201
1202
1203
1204
1205
1206

1207
1208
1209
1210
1211
1212
1213
1214







+

-
+







      }
      if( fts3LcsIteratorAdvance(pAdv) ) nLive--;
    }

    pInfo->aMatchinfo[iCol] = nLcs;
  }

 matchinfo_lcs_out:
  sqlite3_free(aIter);
  return SQLITE_OK;
  return rc;
}

/*
** Populate the buffer pInfo->aMatchinfo[] with an array of integers to
** be returned by the matchinfo() function. Argument zArg contains the 
** format string passed as the second argument to matchinfo (or the
** default value "pcx" if no second argument was specified). The format
1217
1218
1219
1220
1221
1222
1223
1224

1225
1226
1227
1228
1229
1230
1231
1232

1233
1234

1235
1236
1237
1238
1239
1240




1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253

1254
1255
1256





1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273

1274
1275

1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287

1288
1289
1290
1291
1292
1293
1294
1245
1246
1247
1248
1249
1250
1251

1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262

1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289

1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310

1311
1312

1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324

1325
1326
1327
1328
1329
1330
1331
1332







-
+








+

-
+






+
+
+
+













+


-
+
+
+
+
+
















-
+

-
+











-
+







      case FTS3_MATCHINFO_NCOL:
        if( bGlobal ) pInfo->aMatchinfo[0] = pInfo->nCol;
        break;
        
      case FTS3_MATCHINFO_NDOC:
        if( bGlobal ){
          sqlite3_int64 nDoc = 0;
          rc = fts3MatchinfoSelectDoctotal(pTab, &pSelect, &nDoc, 0);
          rc = fts3MatchinfoSelectDoctotal(pTab, &pSelect, &nDoc, 0, 0);
          pInfo->aMatchinfo[0] = (u32)nDoc;
        }
        break;

      case FTS3_MATCHINFO_AVGLENGTH: 
        if( bGlobal ){
          sqlite3_int64 nDoc;     /* Number of rows in table */
          const char *a;          /* Aggregate column length array */
          const char *pEnd;       /* First byte past end of length array */

          rc = fts3MatchinfoSelectDoctotal(pTab, &pSelect, &nDoc, &a);
          rc = fts3MatchinfoSelectDoctotal(pTab, &pSelect, &nDoc, &a, &pEnd);
          if( rc==SQLITE_OK ){
            int iCol;
            for(iCol=0; iCol<pInfo->nCol; iCol++){
              u32 iVal;
              sqlite3_int64 nToken;
              a += sqlite3Fts3GetVarint(a, &nToken);
              if( a>pEnd ){
                rc = SQLITE_CORRUPT_VTAB;
                break;
              }
              iVal = (u32)(((u32)(nToken&0xffffffff)+nDoc/2)/nDoc);
              pInfo->aMatchinfo[iCol] = iVal;
            }
          }
        }
        break;

      case FTS3_MATCHINFO_LENGTH: {
        sqlite3_stmt *pSelectDocsize = 0;
        rc = sqlite3Fts3SelectDocsize(pTab, pCsr->iPrevId, &pSelectDocsize);
        if( rc==SQLITE_OK ){
          int iCol;
          const char *a = sqlite3_column_blob(pSelectDocsize, 0);
          const char *pEnd = a + sqlite3_column_bytes(pSelectDocsize, 0);
          for(iCol=0; iCol<pInfo->nCol; iCol++){
            sqlite3_int64 nToken;
            a += sqlite3Fts3GetVarint(a, &nToken);
            a += sqlite3Fts3GetVarintBounded(a, pEnd, &nToken);
            if( a>pEnd ){
              rc = SQLITE_CORRUPT_VTAB;
              break;
            }
            pInfo->aMatchinfo[iCol] = (u32)nToken;
          }
        }
        sqlite3_reset(pSelectDocsize);
        break;
      }

      case FTS3_MATCHINFO_LCS:
        rc = fts3ExprLoadDoclists(pCsr, 0, 0);
        if( rc==SQLITE_OK ){
          rc = fts3MatchinfoLcs(pCsr, pInfo);
        }
        break;

      case FTS3_MATCHINFO_LHITS_BM:
      case FTS3_MATCHINFO_LHITS: {
        int nZero = fts3MatchinfoSize(pInfo, zArg[i]) * sizeof(u32);
        size_t nZero = fts3MatchinfoSize(pInfo, zArg[i]) * sizeof(u32);
        memset(pInfo->aMatchinfo, 0, nZero);
        fts3ExprLHitGather(pCsr->pExpr, pInfo);
        rc = fts3ExprLHitGather(pCsr->pExpr, pInfo);
        break;
      }

      default: {
        Fts3Expr *pExpr;
        assert( zArg[i]==FTS3_MATCHINFO_HITS );
        pExpr = pCsr->pExpr;
        rc = fts3ExprLoadDoclists(pCsr, 0, 0);
        if( rc!=SQLITE_OK ) break;
        if( bGlobal ){
          if( pCsr->pDeferred ){
            rc = fts3MatchinfoSelectDoctotal(pTab, &pSelect, &pInfo->nDoc, 0);
            rc = fts3MatchinfoSelectDoctotal(pTab, &pSelect, &pInfo->nDoc,0,0);
            if( rc!=SQLITE_OK ) break;
          }
          rc = fts3ExprIterate(pExpr, fts3ExprGlobalHitsCb,(void*)pInfo);
          sqlite3Fts3EvalTestDeferred(pCsr, &rc);
          if( rc!=SQLITE_OK ) break;
        }
        (void)fts3ExprIterate(pExpr, fts3ExprLocalHitsCb,(void*)pInfo);
1335
1336
1337
1338
1339
1340
1341
1342

1343
1344
1345
1346
1347
1348
1349
1373
1374
1375
1376
1377
1378
1379

1380
1381
1382
1383
1384
1385
1386
1387







-
+








  /* If Fts3Cursor.pMIBuffer is NULL, then this is the first time the
  ** matchinfo function has been called for this query. In this case 
  ** allocate the array used to accumulate the matchinfo data and
  ** initialize those elements that are constant for every row.
  */
  if( pCsr->pMIBuffer==0 ){
    int nMatchinfo = 0;           /* Number of u32 elements in match-info */
    size_t nMatchinfo = 0;        /* Number of u32 elements in match-info */
    int i;                        /* Used to iterate through zArg */

    /* Determine the number of phrases in the query */
    pCsr->nPhrase = fts3ExprPhraseCount(pCsr->pExpr);
    sInfo.nPhrase = pCsr->nPhrase;

    /* Determine the number of integers in the buffer returned by this call. */
1419
1420
1421
1422
1423
1424
1425




1426
1427
1428
1429
1430
1431
1432
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474







+
+
+
+







  SnippetFragment aSnippet[4];    /* Maximum of 4 fragments per snippet */
  int nFToken = -1;               /* Number of tokens in each fragment */

  if( !pCsr->pExpr ){
    sqlite3_result_text(pCtx, "", 0, SQLITE_STATIC);
    return;
  }

  /* Limit the snippet length to 64 tokens. */
  if( nToken<-64 ) nToken = -64;
  if( nToken>+64 ) nToken = +64;

  for(nSnippet=1; 1; nSnippet++){

    int iSnip;                    /* Loop counter 0..nSnippet-1 */
    u64 mCovered = 0;             /* Bitmask of phrases covered by snippet */
    u64 mSeen = 0;                /* Bitmask of phrases seen by BestSnippet() */

1521
1522
1523
1524
1525
1526
1527
1528

1529
1530
1531
1532
1533
1534
1535
1563
1564
1565
1566
1567
1568
1569

1570
1571
1572
1573
1574
1575
1576
1577







-
+







  int rc;

  UNUSED_PARAMETER(iPhrase);
  rc = sqlite3Fts3EvalPhrasePoslist(p->pCsr, pExpr, p->iCol, &pList);
  nTerm = pExpr->pPhrase->nToken;
  if( pList ){
    fts3GetDeltaPosition(&pList, &iPos);
    assert( iPos>=0 );
    assert_fts3_nc( iPos>=0 );
  }

  for(iTerm=0; iTerm<nTerm; iTerm++){
    TermOffset *pT = &p->aTerm[p->iTerm++];
    pT->iOff = nTerm-iTerm-1;
    pT->pList = pList;
    pT->iPos = iPos;
1562
1563
1564
1565
1566
1567
1568
1569

1570
1571
1572
1573
1574
1575
1576
1604
1605
1606
1607
1608
1609
1610

1611
1612
1613
1614
1615
1616
1617
1618







-
+







  assert( pCsr->isRequireSeek==0 );

  /* Count the number of terms in the query */
  rc = fts3ExprLoadDoclists(pCsr, 0, &nToken);
  if( rc!=SQLITE_OK ) goto offsets_out;

  /* Allocate the array of TermOffset iterators. */
  sCtx.aTerm = (TermOffset *)sqlite3_malloc(sizeof(TermOffset)*nToken);
  sCtx.aTerm = (TermOffset *)sqlite3_malloc64(sizeof(TermOffset)*nToken);
  if( 0==sCtx.aTerm ){
    rc = SQLITE_NOMEM;
    goto offsets_out;
  }
  sCtx.iDocid = pCsr->iPrevId;
  sCtx.pCsr = pCsr;

1631
1632
1633
1634
1635
1636
1637
1638

1639
1640
1641
1642
1643
1644
1645
1673
1674
1675
1676
1677
1678
1679

1680
1681
1682
1683
1684
1685
1686
1687







-
+







        }
      }

      if( !pTerm ){
        /* All offsets for this column have been gathered. */
        rc = SQLITE_DONE;
      }else{
        assert( iCurrent<=iMinPos );
        assert_fts3_nc( iCurrent<=iMinPos );
        if( 0==(0xFE&*pTerm->pList) ){
          pTerm->pList = 0;
        }else{
          fts3GetDeltaPosition(&pTerm->pList, &pTerm->iPos);
        }
        while( rc==SQLITE_OK && iCurrent<iMinPos ){
          rc = pMod->xNext(pC, &ZDUMMY, &NDUMMY, &iStart, &iEnd, &iCurrent);

Changes to ext/fts3/fts3_term.c.

64
65
66
67
68
69
70
71

72
73

74
75
76
77
78
79
80
64
65
66
67
68
69
70

71
72

73
74
75
76
77
78
79
80







-
+

-
+







  sqlite3_vtab **ppVtab,          /* OUT: New sqlite3_vtab object */
  char **pzErr                    /* OUT: sqlite3_malloc'd error message */
){
  char const *zDb;                /* Name of database (e.g. "main") */
  char const *zFts3;              /* Name of fts3 table */
  int nDb;                        /* Result of strlen(zDb) */
  int nFts3;                      /* Result of strlen(zFts3) */
  int nByte;                      /* Bytes of space to allocate here */
  sqlite3_int64 nByte;            /* Bytes of space to allocate here */
  int rc;                         /* value returned by declare_vtab() */
  Fts3termTable *p;                /* Virtual table object to return */
  Fts3termTable *p;               /* Virtual table object to return */
  int iIndex = 0;

  UNUSED_PARAMETER(pCtx);
  if( argc==5 ){
    iIndex = atoi(argv[4]);
    argc--;
  }
92
93
94
95
96
97
98
99

100
101

102
103
104
105
106
107
108
92
93
94
95
96
97
98

99
100

101
102
103
104
105
106
107
108







-
+

-
+







  zFts3 = argv[3];
  nFts3 = (int)strlen(zFts3);

  rc = sqlite3_declare_vtab(db, FTS3_TERMS_SCHEMA);
  if( rc!=SQLITE_OK ) return rc;

  nByte = sizeof(Fts3termTable) + sizeof(Fts3Table) + nDb + nFts3 + 2;
  p = (Fts3termTable *)sqlite3_malloc(nByte);
  p = (Fts3termTable *)sqlite3_malloc64(nByte);
  if( !p ) return SQLITE_NOMEM;
  memset(p, 0, nByte);
  memset(p, 0, (size_t)nByte);

  p->pFts3Tab = (Fts3Table *)&p[1];
  p->pFts3Tab->zDb = (char *)&p->pFts3Tab[1];
  p->pFts3Tab->zName = &p->pFts3Tab->zDb[nDb+1];
  p->pFts3Tab->db = db;
  p->pFts3Tab->nIndex = iIndex+1;
  p->iIndex = iIndex;
357
358
359
360
361
362
363
364

365
366
367
368
369
370
371
372
373
357
358
359
360
361
362
363

364
365
366
367
368
369
370
371
372
373







-
+









     0,                           /* xSync         */
     0,                           /* xCommit       */
     0,                           /* xRollback     */
     0,                           /* xFindFunction */
     0,                           /* xRename       */
     0,                           /* xSavepoint    */
     0,                           /* xRelease      */
     0                            /* xRollbackTo   */
     0,                           /* xRollbackTo   */
  };
  int rc;                         /* Return code */

  rc = sqlite3_create_module(db, "fts4term", &fts3term_module, 0);
  return rc;
}

#endif
#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */

Changes to ext/fts3/fts3_test.c.

444
445
446
447
448
449
450
451

452
453

454
455
456
457
458

459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474

475
476
477
478
479
480
481
444
445
446
447
448
449
450

451
452

453
454
455
456
457

458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473

474
475
476
477
478
479
480
481







-
+

-
+




-
+















-
+







  while( p<pEnd && testIsTokenChar(*p)==0 ) p++;

  if( p==pEnd ){
    rc = SQLITE_DONE;
  }else{
    /* Advance to the end of the token */
    const char *pToken = p;
    int nToken;
    sqlite3_int64 nToken;
    while( p<pEnd && testIsTokenChar(*p) ) p++;
    nToken = (int)(p-pToken);
    nToken = (sqlite3_int64)(p-pToken);

    /* Copy the token into the buffer */
    if( nToken>pCsr->nBuffer ){
      sqlite3_free(pCsr->aBuffer);
      pCsr->aBuffer = sqlite3_malloc(nToken);
      pCsr->aBuffer = sqlite3_malloc64(nToken);
    }
    if( pCsr->aBuffer==0 ){
      rc = SQLITE_NOMEM;
    }else{
      int i;

      if( pCsr->iLangid & 0x00000001 ){
        for(i=0; i<nToken; i++) pCsr->aBuffer[i] = pToken[i];
      }else{
        for(i=0; i<nToken; i++) pCsr->aBuffer[i] = (char)testTolower(pToken[i]);
      }
      pCsr->iToken++;
      pCsr->iInput = (int)(p - pCsr->aInput);

      *ppToken = pCsr->aBuffer;
      *pnBytes = nToken;
      *pnBytes = (int)nToken;
      *piStartOffset = (int)(pToken - pCsr->aInput);
      *piEndOffset = (int)(p - pCsr->aInput);
      *piPosition = pCsr->iToken;
    }
  }

  return rc;
569
570
571
572
573
574
575



























576
577
578
579
580
581
582
583
584
585
586
587
588



589
590
591
592
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611

612
613
614
615
616
617
618
619
620
621







+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+









-



+
+
+




  UNUSED_PARAMETER(clientData);
  return TCL_OK;
}

/* 
** End of tokenizer code.
**************************************************************************/ 

/*
**      sqlite3_fts3_may_be_corrupt BOOLEAN
**
** Set or clear the global "may-be-corrupt" flag. Return the old value.
*/
static int SQLITE_TCLAPI fts3_may_be_corrupt(
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  int bOld = sqlite3_fts3_may_be_corrupt;

  if( objc!=2 && objc!=1 ){
    Tcl_WrongNumArgs(interp, 1, objv, "?BOOLEAN?");
    return TCL_ERROR;
  }
  if( objc==2 ){
    int bNew;
    if( Tcl_GetBooleanFromObj(interp, objv[1], &bNew) ) return TCL_ERROR;
    sqlite3_fts3_may_be_corrupt = bNew;
  }

  Tcl_SetObjResult(interp, Tcl_NewIntObj(bOld));
  return TCL_OK;
}

int Sqlitetestfts3_Init(Tcl_Interp *interp){
  Tcl_CreateObjCommand(interp, "fts3_near_match", fts3_near_match_cmd, 0, 0);
  Tcl_CreateObjCommand(interp, 
      "fts3_configure_incr_load", fts3_configure_incr_load_cmd, 0, 0
  );
  Tcl_CreateObjCommand(
      interp, "fts3_test_tokenizer", fts3_test_tokenizer_cmd, 0, 0
  );

  Tcl_CreateObjCommand(
      interp, "fts3_test_varint", fts3_test_varint_cmd, 0, 0
  );
  Tcl_CreateObjCommand(
      interp, "sqlite3_fts3_may_be_corrupt", fts3_may_be_corrupt, 0, 0
  );
  return TCL_OK;
}
#endif                  /* SQLITE_ENABLE_FTS3 || SQLITE_ENABLE_FTS4 */
#endif                  /* ifdef SQLITE_TEST */

Changes to ext/fts3/fts3_tokenize_vtab.c.

118
119
120
121
122
123
124
125

126
127
128
129
130
131
132
118
119
120
121
122
123
124

125
126
127
128
129
130
131
132







-
+







    int nByte = 0;
    char **azDequote;

    for(i=0; i<argc; i++){
      nByte += (int)(strlen(argv[i]) + 1);
    }

    *pazDequote = azDequote = sqlite3_malloc(sizeof(char *)*argc + nByte);
    *pazDequote = azDequote = sqlite3_malloc64(sizeof(char *)*argc + nByte);
    if( azDequote==0 ){
      rc = SQLITE_NOMEM;
    }else{
      char *pSpace = (char *)&azDequote[argc];
      for(i=0; i<argc; i++){
        int n = (int)strlen(argv[i]);
        azDequote[i] = pSpace;
342
343
344
345
346
347
348
349

350
351
352
353
354
355
356
342
343
344
345
346
347
348

349
350
351
352
353
354
355
356







-
+







  UNUSED_PARAMETER(idxStr);
  UNUSED_PARAMETER(nVal);

  fts3tokResetCursor(pCsr);
  if( idxNum==1 ){
    const char *zByte = (const char *)sqlite3_value_text(apVal[0]);
    int nByte = sqlite3_value_bytes(apVal[0]);
    pCsr->zInput = sqlite3_malloc(nByte+1);
    pCsr->zInput = sqlite3_malloc64(nByte+1);
    if( pCsr->zInput==0 ){
      rc = SQLITE_NOMEM;
    }else{
      memcpy(pCsr->zInput, zByte, nByte);
      pCsr->zInput[nByte] = 0;
      rc = pTab->pMod->xOpen(pTab->pTok, pCsr->zInput, nByte, &pCsr->pCsr);
      if( rc==SQLITE_OK ){
439
440
441
442
443
444
445
446

447
448
449
450
451
452
453
454
439
440
441
442
443
444
445

446
447
448
449
450
451
452
453
454







-
+








     0,                           /* xSync         */
     0,                           /* xCommit       */
     0,                           /* xRollback     */
     0,                           /* xFindFunction */
     0,                           /* xRename       */
     0,                           /* xSavepoint    */
     0,                           /* xRelease      */
     0                            /* xRollbackTo   */
     0,                           /* xRollbackTo   */
  };
  int rc;                         /* Return code */

  rc = sqlite3_create_module(db, "fts3tokenize", &fts3tok_module, (void*)pHash);
  return rc;
}

#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */

Changes to ext/fts3/fts3_tokenizer.c.

36
37
38
39
40
41
42











43
44
45
46
47
48
49
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60







+
+
+
+
+
+
+
+
+
+
+







*/
static int fts3TokenizerEnabled(sqlite3_context *context){
  sqlite3 *db = sqlite3_context_db_handle(context);
  int isEnabled = 0;
  sqlite3_db_config(db,SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER,-1,&isEnabled);
  return isEnabled;
}

/*
** The real sqlite3_value_frombind() implementation was not added
** until version 3.28.0 of the SQLite core.  This fake version facilitates
** testing.
*/
static int bFrombindTrue = 0;
static int sqlite3_value_frombind(sqlite3_value *NotUsed){
  (void)NotUsed;
  return bFrombindTrue;
}

/*
** Implementation of the SQL scalar function for accessing the underlying 
** hash table. This function may be called as follows:
**
**   SELECT <function-name>(<key-name>);
**   SELECT <function-name>(<key-name>, <pointer>);
75
76
77
78
79
80
81
82

83
84
85
86
87
88
89
86
87
88
89
90
91
92

93
94
95
96
97
98
99
100







-
+








  pHash = (Fts3Hash *)sqlite3_user_data(context);

  zName = sqlite3_value_text(argv[0]);
  nName = sqlite3_value_bytes(argv[0])+1;

  if( argc==2 ){
    if( fts3TokenizerEnabled(context) ){
    if( fts3TokenizerEnabled(context) || sqlite3_value_frombind(argv[1]) ){
      void *pOld;
      int n = sqlite3_value_bytes(argv[1]);
      if( zName==0 || n!=sizeof(pPtr) ){
        sqlite3_result_error(context, "argument type mismatch", -1);
        return;
      }
      pPtr = *(void **)sqlite3_value_blob(argv[1]);
102
103
104
105
106
107
108

109


110
111
112
113
114
115
116
113
114
115
116
117
118
119
120

121
122
123
124
125
126
127
128
129







+
-
+
+







    if( !pPtr ){
      char *zErr = sqlite3_mprintf("unknown tokenizer: %s", zName);
      sqlite3_result_error(context, zErr, -1);
      sqlite3_free(zErr);
      return;
    }
  }
  if( fts3TokenizerEnabled(context) || sqlite3_value_frombind(argv[0]) ){
  sqlite3_result_blob(context, (void *)&pPtr, sizeof(pPtr), SQLITE_TRANSIENT);
    sqlite3_result_blob(context, (void *)&pPtr, sizeof(pPtr), SQLITE_TRANSIENT);
  }
}

int sqlite3Fts3IsIdChar(char c){
  static const char isFtsIdChar[] = {
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  /* 0x */
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  /* 1x */
      0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  /* 2x */
190
191
192
193
194
195
196
197
198


199
200
201
202
203
204
205
203
204
205
206
207
208
209


210
211
212
213
214
215
216
217
218







-
-
+
+







    sqlite3Fts3ErrMsg(pzErr, "unknown tokenizer: %s", z);
    rc = SQLITE_ERROR;
  }else{
    char const **aArg = 0;
    int iArg = 0;
    z = &z[n+1];
    while( z<zEnd && (NULL!=(z = (char *)sqlite3Fts3NextToken(z, &n))) ){
      int nNew = sizeof(char *)*(iArg+1);
      char const **aNew = (const char **)sqlite3_realloc((void *)aArg, nNew);
      sqlite3_int64 nNew = sizeof(char *)*(iArg+1);
      char const **aNew = (const char **)sqlite3_realloc64((void *)aArg, nNew);
      if( !aNew ){
        sqlite3_free(zCopy);
        sqlite3_free((void *)aArg);
        return SQLITE_NOMEM;
      }
      aArg = aNew;
      aArg[iArg++] = z;
384
385
386
387
388
389
390
391



392
393
394
395
396
397
398
397
398
399
400
401
402
403

404
405
406
407
408
409
410
411
412
413







-
+
+
+







  rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
  if( rc!=SQLITE_OK ){
    return rc;
  }

  sqlite3_bind_text(pStmt, 1, zName, -1, SQLITE_STATIC);
  if( SQLITE_ROW==sqlite3_step(pStmt) ){
    if( sqlite3_column_type(pStmt, 0)==SQLITE_BLOB ){
    if( sqlite3_column_type(pStmt, 0)==SQLITE_BLOB
     && sqlite3_column_bytes(pStmt, 0)==sizeof(*pp)
    ){
      memcpy((void *)pp, sqlite3_column_blob(pStmt, 0), sizeof(*pp));
    }
  }

  return sqlite3_finalize(pStmt);
}

426
427
428
429
430
431
432

433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449

450
451
452
453
454
455
456
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473







+

















+







  const sqlite3_tokenizer_module *p2;
  sqlite3 *db = (sqlite3 *)sqlite3_user_data(context);

  UNUSED_PARAMETER(argc);
  UNUSED_PARAMETER(argv);

  /* Test the query function */
  bFrombindTrue = 1;
  sqlite3Fts3SimpleTokenizerModule(&p1);
  rc = queryTokenizer(db, "simple", &p2);
  assert( rc==SQLITE_OK );
  assert( p1==p2 );
  rc = queryTokenizer(db, "nosuchtokenizer", &p2);
  assert( rc==SQLITE_ERROR );
  assert( p2==0 );
  assert( 0==strcmp(sqlite3_errmsg(db), "unknown tokenizer: nosuchtokenizer") );

  /* Test the storage function */
  if( fts3TokenizerEnabled(context) ){
    rc = registerTokenizer(db, "nosuchtokenizer", p1);
    assert( rc==SQLITE_OK );
    rc = queryTokenizer(db, "nosuchtokenizer", &p2);
    assert( rc==SQLITE_OK );
    assert( p2==p1 );
  }
  bFrombindTrue = 0;

  sqlite3_result_text(context, "ok", -1, SQLITE_STATIC);
}

#endif

/*
473
474
475
476
477
478
479
480

481
482
483
484
485
486
487
490
491
492
493
494
495
496

497
498
499
500
501
502
503
504







-
+







int sqlite3Fts3InitHashTable(
  sqlite3 *db, 
  Fts3Hash *pHash, 
  const char *zName
){
  int rc = SQLITE_OK;
  void *p = (void *)pHash;
  const int any = SQLITE_ANY;
  const int any = SQLITE_UTF8|SQLITE_DIRECTONLY;

#ifdef SQLITE_TEST
  char *zTest = 0;
  char *zTest2 = 0;
  void *pdb = (void *)db;
  zTest = sqlite3_mprintf("%s_test", zName);
  zTest2 = sqlite3_mprintf("%s_internal_test", zName);

Changes to ext/fts3/fts3_unicode.c.

78
79
80
81
82
83
84
85

86
87
88
89
90
91
92
78
79
80
81
82
83
84

85
86
87
88
89
90
91
92







-
+







#endif /* ifndef SQLITE_AMALGAMATION */

typedef struct unicode_tokenizer unicode_tokenizer;
typedef struct unicode_cursor unicode_cursor;

struct unicode_tokenizer {
  sqlite3_tokenizer base;
  int bRemoveDiacritic;
  int eRemoveDiacritic;
  int nException;
  int *aiException;
};

struct unicode_cursor {
  sqlite3_tokenizer_cursor base;
  const unsigned char *aInput;    /* Input text being tokenized */
151
152
153
154
155
156
157
158

159
160
161
162
163
164
165
151
152
153
154
155
156
157

158
159
160
161
162
163
164
165







-
+







    }
  }

  if( nEntry ){
    int *aNew;                    /* New aiException[] array */
    int nNew;                     /* Number of valid entries in array aNew[] */

    aNew = sqlite3_realloc(p->aiException, (p->nException+nEntry)*sizeof(int));
    aNew = sqlite3_realloc64(p->aiException,(p->nException+nEntry)*sizeof(int));
    if( aNew==0 ) return SQLITE_NOMEM;
    nNew = p->nException;

    z = (const unsigned char *)zIn;
    while( z<zTerm ){
      READ_UTF8(z, zTerm, iCode);
      if( sqlite3FtsUnicodeIsalnum((int)iCode)!=bAlnum 
223
224
225
226
227
228
229
230

231
232
233
234
235
236
237

238
239
240




241
242
243
244
245
246
247
223
224
225
226
227
228
229

230
231
232
233
234
235
236

237
238
239

240
241
242
243
244
245
246
247
248
249
250







-
+






-
+


-
+
+
+
+







  unicode_tokenizer *pNew;        /* New tokenizer object */
  int i;
  int rc = SQLITE_OK;

  pNew = (unicode_tokenizer *) sqlite3_malloc(sizeof(unicode_tokenizer));
  if( pNew==NULL ) return SQLITE_NOMEM;
  memset(pNew, 0, sizeof(unicode_tokenizer));
  pNew->bRemoveDiacritic = 1;
  pNew->eRemoveDiacritic = 1;

  for(i=0; rc==SQLITE_OK && i<nArg; i++){
    const char *z = azArg[i];
    int n = (int)strlen(z);

    if( n==19 && memcmp("remove_diacritics=1", z, 19)==0 ){
      pNew->bRemoveDiacritic = 1;
      pNew->eRemoveDiacritic = 1;
    }
    else if( n==19 && memcmp("remove_diacritics=0", z, 19)==0 ){
      pNew->bRemoveDiacritic = 0;
      pNew->eRemoveDiacritic = 0;
    }
    else if( n==19 && memcmp("remove_diacritics=2", z, 19)==0 ){
      pNew->eRemoveDiacritic = 2;
    }
    else if( n>=11 && memcmp("tokenchars=", z, 11)==0 ){
      rc = unicodeAddExceptions(pNew, 1, &z[11], n-11);
    }
    else if( n>=11 && memcmp("separators=", z, 11)==0 ){
      rc = unicodeAddExceptions(pNew, 0, &z[11], n-11);
    }
337
338
339
340
341
342
343
344

345
346
347
348
349
350
351
352
353

354
355
356
357
358
359
360
340
341
342
343
344
345
346

347
348
349
350
351
352
353
354
355

356
357
358
359
360
361
362
363







-
+








-
+








  zOut = pCsr->zToken;
  do {
    int iOut;

    /* Grow the output buffer if required. */
    if( (zOut-pCsr->zToken)>=(pCsr->nAlloc-4) ){
      char *zNew = sqlite3_realloc(pCsr->zToken, pCsr->nAlloc+64);
      char *zNew = sqlite3_realloc64(pCsr->zToken, pCsr->nAlloc+64);
      if( !zNew ) return SQLITE_NOMEM;
      zOut = &zNew[zOut - pCsr->zToken];
      pCsr->zToken = zNew;
      pCsr->nAlloc += 64;
    }

    /* Write the folded case of the last character read to the output */
    zEnd = z;
    iOut = sqlite3FtsUnicodeFold((int)iCode, p->bRemoveDiacritic);
    iOut = sqlite3FtsUnicodeFold((int)iCode, p->eRemoveDiacritic);
    if( iOut ){
      WRITE_UTF8(zOut, iOut);
    }

    /* If the cursor is not at EOF, read the next character */
    if( z>=zTerm ) break;
    READ_UTF8(z, zTerm, iCode);

Changes to ext/fts3/fts3_unicode2.c.

1
2

3
4
5
6
7
8
9
1

2
3
4
5
6
7
8
9

-
+







/*
** 2012 May 25
** 2012-05-25
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
155
156
157
158
159
160
161
162

163
164
165
166
167
168
169
170
171
172
173
174
175
176












177

178

179
180
181











182
183
184
185
186
187










188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203

204

205
206
207
208
209
210
211
212
213
214
215
216
217
218


219
220
221
222
223
224
225
226
227
228
229
230
231

232
233
234
235
236
237
238
155
156
157
158
159
160
161

162
163
164
165
166
167









168
169
170
171
172
173
174
175
176
177
178
179
180
181

182



183
184
185
186
187
188
189
190
191
192
193






194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

221
222
223
224
225
226
227
228
229
230
231
232
233


234
235
236
237
238
239
240
241
242
243
244
245
246
247

248
249
250
251
252
253
254
255







-
+





-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+

+
-
+
-
-
-
+
+
+
+
+
+
+
+
+
+
+
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
















+
-
+












-
-
+
+












-
+







** If the argument is a codepoint corresponding to a lowercase letter
** in the ASCII range with a diacritic added, return the codepoint
** of the ASCII letter only. For example, if passed 235 - "LATIN
** SMALL LETTER E WITH DIAERESIS" - return 65 ("LATIN SMALL LETTER
** E"). The resuls of passing a codepoint that corresponds to an
** uppercase letter are undefined.
*/
static int remove_diacritic(int c){
static int remove_diacritic(int c, int bComplex){
  unsigned short aDia[] = {
        0,  1797,  1848,  1859,  1891,  1928,  1940,  1995, 
     2024,  2040,  2060,  2110,  2168,  2206,  2264,  2286, 
     2344,  2383,  2472,  2488,  2516,  2596,  2668,  2732, 
     2782,  2842,  2894,  2954,  2984,  3000,  3028,  3336, 
     3456,  3696,  3712,  3728,  3744,  3896,  3912,  3928, 
     3968,  4008,  4040,  4106,  4138,  4170,  4202,  4234, 
     4266,  4296,  4312,  4344,  4408,  4424,  4472,  4504, 
     6148,  6198,  6264,  6280,  6360,  6429,  6505,  6529, 
    61448, 61468, 61534, 61592, 61642, 61688, 61704, 61726, 
    61784, 61800, 61836, 61880, 61914, 61948, 61998, 62122, 
    62154, 62200, 62218, 62302, 62364, 62442, 62478, 62536, 
    62554, 62584, 62604, 62640, 62648, 62656, 62664, 62730, 
    62924, 63050, 63082, 63274, 63390, 
     3456,  3696,  3712,  3728,  3744,  3766,  3832,  3896, 
     3912,  3928,  3944,  3968,  4008,  4040,  4056,  4106, 
     4138,  4170,  4202,  4234,  4266,  4296,  4312,  4344, 
     4408,  4424,  4442,  4472,  4488,  4504,  6148,  6198, 
     6264,  6280,  6360,  6429,  6505,  6529, 61448, 61468, 
    61512, 61534, 61592, 61610, 61642, 61672, 61688, 61704, 
    61726, 61784, 61800, 61816, 61836, 61880, 61896, 61914, 
    61948, 61998, 62062, 62122, 62154, 62184, 62200, 62218, 
    62252, 62302, 62364, 62410, 62442, 62478, 62536, 62554, 
    62584, 62604, 62640, 62648, 62656, 62664, 62730, 62766, 
    62830, 62890, 62924, 62974, 63032, 63050, 63082, 63118, 
    63182, 63242, 63274, 63310, 63368, 63390, 
  };
#define HIBIT ((unsigned char)0x80)
  char aChar[] = {
  unsigned char aChar[] = {
    '\0', 'a',  'c',  'e',  'i',  'n',  'o',  'u',  'y',  'y',  'a',  'c',  
    'd',  'e',  'e',  'g',  'h',  'i',  'j',  'k',  'l',  'n',  'o',  'r',  
    's',  't',  'u',  'u',  'w',  'y',  'z',  'o',  'u',  'a',  'i',  'o',  
    '\0',      'a',       'c',       'e',       'i',       'n',       
    'o',       'u',       'y',       'y',       'a',       'c',       
    'd',       'e',       'e',       'g',       'h',       'i',       
    'j',       'k',       'l',       'n',       'o',       'r',       
    's',       't',       'u',       'u',       'w',       'y',       
    'z',       'o',       'u',       'a',       'i',       'o',       
    'u',       'u'|HIBIT, 'a'|HIBIT, 'g',       'k',       'o',       
    'o'|HIBIT, 'j',       'g',       'n',       'a'|HIBIT, 'a',       
    'e',       'i',       'o',       'r',       'u',       's',       
    't',       'h',       'a',       'e',       'o'|HIBIT, 'o',       
    'o'|HIBIT, 'y',       '\0',      '\0',      '\0',      '\0',      
    'u',  'g',  'k',  'o',  'j',  'g',  'n',  'a',  'e',  'i',  'o',  'r',  
    'u',  's',  't',  'h',  'a',  'e',  'o',  'y',  '\0', '\0', '\0', '\0', 
    '\0', '\0', '\0', '\0', 'a',  'b',  'd',  'd',  'e',  'f',  'g',  'h',  
    'h',  'i',  'k',  'l',  'l',  'm',  'n',  'p',  'r',  'r',  's',  't',  
    'u',  'v',  'w',  'w',  'x',  'y',  'z',  'h',  't',  'w',  'y',  'a',  
    'e',  'i',  'o',  'u',  'y',  
    '\0',      '\0',      '\0',      '\0',      'a',       'b',       
    'c'|HIBIT, 'd',       'd',       'e'|HIBIT, 'e',       'e'|HIBIT, 
    'f',       'g',       'h',       'h',       'i',       'i'|HIBIT, 
    'k',       'l',       'l'|HIBIT, 'l',       'm',       'n',       
    'o'|HIBIT, 'p',       'r',       'r'|HIBIT, 'r',       's',       
    's'|HIBIT, 't',       'u',       'u'|HIBIT, 'v',       'w',       
    'w',       'x',       'y',       'z',       'h',       't',       
    'w',       'y',       'a',       'a'|HIBIT, 'a'|HIBIT, 'a'|HIBIT, 
    'e',       'e'|HIBIT, 'e'|HIBIT, 'i',       'o',       'o'|HIBIT, 
    'o'|HIBIT, 'o'|HIBIT, 'u',       'u'|HIBIT, 'u'|HIBIT, 'y',       
  };

  unsigned int key = (((unsigned int)c)<<3) | 0x00000007;
  int iRes = 0;
  int iHi = sizeof(aDia)/sizeof(aDia[0]) - 1;
  int iLo = 0;
  while( iHi>=iLo ){
    int iTest = (iHi + iLo) / 2;
    if( key >= aDia[iTest] ){
      iRes = iTest;
      iLo = iTest+1;
    }else{
      iHi = iTest-1;
    }
  }
  assert( key>=aDia[iRes] );
  if( bComplex==0 && (aChar[iRes] & 0x80) ) return c;
  return ((c > (aDia[iRes]>>3) + (aDia[iRes]&0x07)) ? c : (int)aChar[iRes]);
  return (c > (aDia[iRes]>>3) + (aDia[iRes]&0x07)) ? c : ((int)aChar[iRes] & 0x7F);
}


/*
** Return true if the argument interpreted as a unicode codepoint
** is a diacritical modifier character.
*/
int sqlite3FtsUnicodeIsdiacritic(int c){
  unsigned int mask0 = 0x08029FDF;
  unsigned int mask1 = 0x000361F8;
  if( c<768 || c>817 ) return 0;
  return (c < 768+32) ?
      (mask0 & (1 << (c-768))) :
      (mask1 & (1 << (c-768-32)));
      (mask0 & ((unsigned int)1 << (c-768))) :
      (mask1 & ((unsigned int)1 << (c-768-32)));
}


/*
** Interpret the argument as a unicode codepoint. If the codepoint
** is an upper case character that has a lower case equivalent,
** return the codepoint corresponding to the lower case version.
** Otherwise, return a copy of the argument.
**
** The results are undefined if the value passed to this function
** is less than zero.
*/
int sqlite3FtsUnicodeFold(int c, int bRemoveDiacritic){
int sqlite3FtsUnicodeFold(int c, int eRemoveDiacritic){
  /* Each entry in the following array defines a rule for folding a range
  ** of codepoints to lower case. The rule applies to a range of nRange
  ** codepoints starting at codepoint iCode.
  **
  ** If the least significant bit in flags is clear, then the rule applies
  ** to all nRange codepoints (i.e. all nRange codepoints are upper case and
  ** need to be folded). Or, if it is set, then the rule only applies to
347
348
349
350
351
352
353

354


355
356
357
358
359
360
361
362
363
364
364
365
366
367
368
369
370
371

372
373
374
375
376
377
378
379
380
381
382
383







+
-
+
+










    assert( iRes>=0 && c>=aEntry[iRes].iCode );
    p = &aEntry[iRes];
    if( c<(p->iCode + p->nRange) && 0==(0x01 & p->flags & (p->iCode ^ c)) ){
      ret = (c + (aiOff[p->flags>>1])) & 0x0000FFFF;
      assert( ret>0 );
    }

    if( eRemoveDiacritic ){
    if( bRemoveDiacritic ) ret = remove_diacritic(ret);
      ret = remove_diacritic(ret, eRemoveDiacritic==2);
    }
  }
  
  else if( c>=66560 && c<66600 ){
    ret = c + 40;
  }

  return ret;
}
#endif /* defined(SQLITE_ENABLE_FTS3) || defined(SQLITE_ENABLE_FTS4) */
#endif /* !defined(SQLITE_DISABLE_FTS3_UNICODE) */

Changes to ext/fts3/fts3_write.c.

19
20
21
22
23
24
25
26

27
28
29
30
31
32
33
19
20
21
22
23
24
25

26
27
28
29
30
31
32
33







-
+








#include "fts3Int.h"
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)

#include <string.h>
#include <assert.h>
#include <stdlib.h>

#include <stdio.h>

#define FTS_MAX_APPENDABLE_HEIGHT 16

/*
** When full-text index nodes are loaded from disk, the buffer that they
** are loaded into has the following number of bytes of padding at the end 
** of it. i.e. if a full-text index node is 900 bytes in size, then a buffer
63
64
65
66
67
68
69
70

71
72
73
74
75
76
77
63
64
65
66
67
68
69

70
71
72
73
74
75
76
77







-
+







# define FTS3_NODE_CHUNK_THRESHOLD test_fts3_node_chunk_threshold
#else
# define FTS3_NODE_CHUNKSIZE (4*1024) 
# define FTS3_NODE_CHUNK_THRESHOLD (FTS3_NODE_CHUNKSIZE*4)
#endif

/*
** The two values that may be meaningfully bound to the :1 parameter in
** The values that may be meaningfully bound to the :1 parameter in
** statements SQL_REPLACE_STAT and SQL_SELECT_STAT.
*/
#define FTS_STAT_DOCTOTAL      0
#define FTS_STAT_INCRMERGEHINT 1
#define FTS_STAT_AUTOINCRMERGE 2

/*
331
332
333
334
335
336
337
338

339
340
341
342
343
344
345
331
332
333
334
335
336
337

338
339
340
341
342
343
344
345







-
+







/* This statement is used to determine which level to read the input from
** when performing an incremental merge. It returns the absolute level number
** of the oldest level in the db that contains at least ? segments. Or,
** if no level in the FTS index contains more than ? segments, the statement
** returns zero rows.  */
/* 28 */ "SELECT level, count(*) AS cnt FROM %Q.'%q_segdir' "
         "  GROUP BY level HAVING cnt>=?"
         "  ORDER BY (level %% 1024) ASC LIMIT 1",
         "  ORDER BY (level %% 1024) ASC, 2 DESC LIMIT 1",

/* Estimate the upper limit on the number of leaf nodes in a new segment
** created by merging the oldest :2 segments from absolute level :1. See 
** function sqlite3Fts3Incrmerge() for details.  */
/* 29 */ "SELECT 2 * total(1 + leaves_end_block - start_block) "
         "  FROM %Q.'%q_segdir' WHERE level = ? AND idx < ?",

392
393
394
395
396
397
398

399
400
401
402

403
404
405
406
407
408
409
410

411
412
413
414
415
416
417
418
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411

412

413
414
415
416
417
418
419







+




+







-
+
-







  sqlite3_stmt *pStmt;

  assert( SizeofArray(azSql)==SizeofArray(p->aStmt) );
  assert( eStmt<SizeofArray(azSql) && eStmt>=0 );
  
  pStmt = p->aStmt[eStmt];
  if( !pStmt ){
    int f = SQLITE_PREPARE_PERSISTENT|SQLITE_PREPARE_NO_VTAB;
    char *zSql;
    if( eStmt==SQL_CONTENT_INSERT ){
      zSql = sqlite3_mprintf(azSql[eStmt], p->zDb, p->zName, p->zWriteExprlist);
    }else if( eStmt==SQL_SELECT_CONTENT_BY_ROWID ){
      f &= ~SQLITE_PREPARE_NO_VTAB;
      zSql = sqlite3_mprintf(azSql[eStmt], p->zReadExprlist);
    }else{
      zSql = sqlite3_mprintf(azSql[eStmt], p->zDb, p->zName);
    }
    if( !zSql ){
      rc = SQLITE_NOMEM;
    }else{
      rc = sqlite3_prepare_v3(p->db, zSql, -1, SQLITE_PREPARE_PERSISTENT,
      rc = sqlite3_prepare_v3(p->db, zSql, -1, f, &pStmt, NULL);
                              &pStmt, NULL);
      sqlite3_free(zSql);
      assert( rc==SQLITE_OK || pStmt==0 );
      p->aStmt[eStmt] = pStmt;
    }
  }
  if( apVal ){
    int i;
562
563
564
565
566
567
568
569

570
571
572
573
574
575
576
563
564
565
566
567
568
569

570
571
572
573
574
575
576
577







-
+







static sqlite3_int64 getAbsoluteLevel(
  Fts3Table *p,                   /* FTS3 table handle */
  int iLangid,                    /* Language id */
  int iIndex,                     /* Index in p->aIndex[] */
  int iLevel                      /* Level of segments */
){
  sqlite3_int64 iBase;            /* First absolute level for iLangid/iIndex */
  assert( iLangid>=0 );
  assert_fts3_nc( iLangid>=0 );
  assert( p->nIndex>0 );
  assert( iIndex>=0 && iIndex<p->nIndex );

  iBase = ((sqlite3_int64)iLangid * p->nIndex + iIndex) * FTS3_SEGDIR_MAXLEVEL;
  return iBase + iLevel;
}

691
692
693
694
695
696
697
698

699
700
701
702
703
704
705
692
693
694
695
696
697
698

699
700
701
702
703
704
705
706







-
+







){
  PendingList *p = *pp;
  int rc = SQLITE_OK;

  assert( !p || p->iLastDocid<=iDocid );

  if( !p || p->iLastDocid!=iDocid ){
    sqlite3_int64 iDelta = iDocid - (p ? p->iLastDocid : 0);
    u64 iDelta = (u64)iDocid - (u64)(p ? p->iLastDocid : 0);
    if( p ){
      assert( p->nData<p->nSpace );
      assert( p->aData[p->nData]==0 );
      p->nData++;
    }
    if( SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, iDelta)) ){
      goto pendinglistappend_out;
1148
1149
1150
1151
1152
1153
1154
1155

1156
1157
1158
1159
1160
1161
1162
1149
1150
1151
1152
1153
1154
1155

1156
1157
1158
1159
1160
1161
1162
1163







-
+








  if( rc==SQLITE_OK ){
    /* If iNext is FTS3_MERGE_COUNT, indicating that level iLevel is already
    ** full, merge all segments in level iLevel into a single iLevel+1
    ** segment and allocate (newly freed) index 0 at level iLevel. Otherwise,
    ** if iNext is less than FTS3_MERGE_COUNT, allocate index iNext.
    */
    if( iNext>=FTS3_MERGE_COUNT ){
    if( iNext>=MergeCount(p) ){
      fts3LogMerge(16, getAbsoluteLevel(p, iLangid, iIndex, iLevel));
      rc = fts3SegmentMerge(p, iLangid, iIndex, iLevel);
      *piIdx = 0;
    }else{
      *piIdx = iNext;
    }
  }
1232
1233
1234
1235
1236
1237
1238


1239
1240
1241
1242
1243
1244
1245
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248







+
+







        if( rc!=SQLITE_OK ){
          sqlite3_free(aByte);
          aByte = 0;
        }
      }
      *paBlob = aByte;
    }
  }else if( rc==SQLITE_ERROR ){
    rc = FTS_CORRUPT_VTAB;
  }

  return rc;
}

/*
** Close the blob handle at p->pSegments, if it is open. See comments above
1343
1344
1345
1346
1347
1348
1349

1350


1351
1352
1353
1354
1355
1356
1357
1346
1347
1348
1349
1350
1351
1352
1353

1354
1355
1356
1357
1358
1359
1360
1361
1362







+
-
+
+







      return SQLITE_OK;
    }

    fts3SegReaderSetEof(pReader);

    /* If iCurrentBlock>=iLeafEndBlock, this is an EOF condition. All leaf 
    ** blocks have already been traversed.  */
#ifdef CORRUPT_DB
    assert( pReader->iCurrentBlock<=pReader->iLeafEndBlock );
    assert( pReader->iCurrentBlock<=pReader->iLeafEndBlock || CORRUPT_DB );
#endif
    if( pReader->iCurrentBlock>=pReader->iLeafEndBlock ){
      return SQLITE_OK;
    }

    rc = sqlite3Fts3ReadBlock(
        p, ++pReader->iCurrentBlock, &pReader->aNode, &pReader->nNode, 
        (bIncr ? &pReader->nPopulate : 0)
1370
1371
1372
1373
1374
1375
1376
1377
1378



1379
1380
1381
1382



1383
1384
1385



1386
1387
1388
1389
1390
1391
1392
1375
1376
1377
1378
1379
1380
1381


1382
1383
1384
1385
1386
1387
1388
1389
1390
1391



1392
1393
1394
1395
1396
1397
1398
1399
1400
1401







-
-
+
+
+




+
+
+
-
-
-
+
+
+







  rc = fts3SegReaderRequire(pReader, pNext, FTS3_VARINT_MAX*2);
  if( rc!=SQLITE_OK ) return rc;
  
  /* Because of the FTS3_NODE_PADDING bytes of padding, the following is 
  ** safe (no risk of overread) even if the node data is corrupted. */
  pNext += fts3GetVarint32(pNext, &nPrefix);
  pNext += fts3GetVarint32(pNext, &nSuffix);
  if( nPrefix<0 || nSuffix<=0 
   || &pNext[nSuffix]>&pReader->aNode[pReader->nNode] 
  if( nSuffix<=0 
   || (&pReader->aNode[pReader->nNode] - pNext)<nSuffix
   || nPrefix>pReader->nTerm
  ){
    return FTS_CORRUPT_VTAB;
  }

  /* Both nPrefix and nSuffix were read by fts3GetVarint32() and so are
  ** between 0 and 0x7FFFFFFF. But the sum of the two may cause integer
  ** overflow - hence the (i64) casts.  */
  if( nPrefix+nSuffix>pReader->nTermAlloc ){
    int nNew = (nPrefix+nSuffix)*2;
    char *zNew = sqlite3_realloc(pReader->zTerm, nNew);
  if( (i64)nPrefix+nSuffix>(i64)pReader->nTermAlloc ){
    i64 nNew = ((i64)nPrefix+nSuffix)*2;
    char *zNew = sqlite3_realloc64(pReader->zTerm, nNew);
    if( !zNew ){
      return SQLITE_NOMEM;
    }
    pReader->zTerm = zNew;
    pReader->nTermAlloc = nNew;
  }

1400
1401
1402
1403
1404
1405
1406
1407

1408
1409
1410
1411
1412
1413
1414
1409
1410
1411
1412
1413
1414
1415

1416
1417
1418
1419
1420
1421
1422
1423







-
+







  pReader->aDoclist = pNext;
  pReader->pOffsetList = 0;

  /* Check that the doclist does not appear to extend past the end of the
  ** b-tree node. And that the final byte of the doclist is 0x00. If either 
  ** of these statements is untrue, then the data structure is corrupt.
  */
  if( &pReader->aDoclist[pReader->nDoclist]>&pReader->aNode[pReader->nNode] 
  if( pReader->nDoclist > pReader->nNode-(pReader->aDoclist-pReader->aNode)
   || (pReader->nPopulate==0 && pReader->aDoclist[pReader->nDoclist-1])
  ){
    return FTS_CORRUPT_VTAB;
  }
  return SQLITE_OK;
}

1518
1519
1520
1521
1522
1523
1524
1525
1526


1527
1528

1529
1530

1531
1532
1533
1534
1535
1536

1537
1538
1539
1540
1541
1542
1543
1527
1528
1529
1530
1531
1532
1533


1534
1535
1536

1537
1538

1539
1540
1541
1542
1543
1544

1545
1546
1547
1548
1549
1550
1551
1552







-
-
+
+

-
+

-
+





-
+







    ** returning.
    */
    if( p>=pEnd ){
      pReader->pOffsetList = 0;
    }else{
      rc = fts3SegReaderRequire(pReader, p, FTS3_VARINT_MAX);
      if( rc==SQLITE_OK ){
        sqlite3_int64 iDelta;
        pReader->pOffsetList = p + sqlite3Fts3GetVarint(p, &iDelta);
        u64 iDelta;
        pReader->pOffsetList = p + sqlite3Fts3GetVarintU(p, &iDelta);
        if( pTab->bDescIdx ){
          pReader->iDocid -= iDelta;
          pReader->iDocid = (i64)((u64)pReader->iDocid - iDelta);
        }else{
          pReader->iDocid += iDelta;
          pReader->iDocid = (i64)((u64)pReader->iDocid + iDelta);
        }
      }
    }
  }

  return SQLITE_OK;
  return rc;
}


int sqlite3Fts3MsrOvfl(
  Fts3Cursor *pCsr, 
  Fts3MultiSegReader *pMsr,
  int *pnOvfl
1600
1601
1602
1603
1604
1605
1606




1607

1608

1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628

1629
1630
1631
1632
1633
1634
1635
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641

1642
1643
1644
1645
1646
1647
1648
1649







+
+
+
+
-
+

+



















-
+







  const char *zRoot,              /* Buffer containing root node */
  int nRoot,                      /* Size of buffer containing root node */
  Fts3SegReader **ppReader        /* OUT: Allocated Fts3SegReader */
){
  Fts3SegReader *pReader;         /* Newly allocated SegReader object */
  int nExtra = 0;                 /* Bytes to allocate segment root node */

  assert( zRoot!=0 || nRoot==0 );
#ifdef CORRUPT_DB
  assert( zRoot!=0 || CORRUPT_DB );
#endif
  assert( iStartLeaf<=iEndLeaf );

  if( iStartLeaf==0 ){
    if( iEndLeaf!=0 ) return FTS_CORRUPT_VTAB;
    nExtra = nRoot + FTS3_NODE_PADDING;
  }

  pReader = (Fts3SegReader *)sqlite3_malloc(sizeof(Fts3SegReader) + nExtra);
  if( !pReader ){
    return SQLITE_NOMEM;
  }
  memset(pReader, 0, sizeof(Fts3SegReader));
  pReader->iIdx = iAge;
  pReader->bLookup = bLookup!=0;
  pReader->iStartBlock = iStartLeaf;
  pReader->iLeafEndBlock = iEndLeaf;
  pReader->iEndBlock = iEndBlock;

  if( nExtra ){
    /* The entire segment is stored in the root node. */
    pReader->aNode = (char *)&pReader[1];
    pReader->rootOnly = 1;
    pReader->nNode = nRoot;
    memcpy(pReader->aNode, zRoot, nRoot);
    if( nRoot ) memcpy(pReader->aNode, zRoot, nRoot);
    memset(&pReader->aNode[nRoot], 0, FTS3_NODE_PADDING);
  }else{
    pReader->iCurrentBlock = iStartLeaf-1;
  }
  *ppReader = pReader;
  return SQLITE_OK;
}
1736
1737
1738
1739
1740
1741
1742

1743
1744


1745
1746
1747
1748
1749
1750
1751
1750
1751
1752
1753
1754
1755
1756
1757


1758
1759
1760
1761
1762
1763
1764
1765
1766







+
-
-
+
+







    if( pE ){
      aElem = &pE;
      nElem = 1;
    }
  }

  if( nElem>0 ){
    sqlite3_int64 nByte;
    int nByte = sizeof(Fts3SegReader) + (nElem+1)*sizeof(Fts3HashElem *);
    pReader = (Fts3SegReader *)sqlite3_malloc(nByte);
    nByte = sizeof(Fts3SegReader) + (nElem+1)*sizeof(Fts3HashElem *);
    pReader = (Fts3SegReader *)sqlite3_malloc64(nByte);
    if( !pReader ){
      rc = SQLITE_NOMEM;
    }else{
      memset(pReader, 0, nByte);
      pReader->iIdx = 0x7FFFFFFF;
      pReader->ppNextElem = (Fts3HashElem **)&pReader[1];
      memcpy(pReader->ppNextElem, aElem, nElem*sizeof(Fts3HashElem *));
1904
1905
1906
1907
1908
1909
1910

1911
1912
1913
1914
1915
1916
1917
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933







+







  sqlite3_stmt *pStmt;
  int rc = fts3SqlStmt(p, SQL_INSERT_SEGMENTS, &pStmt, 0);
  if( rc==SQLITE_OK ){
    sqlite3_bind_int64(pStmt, 1, iBlock);
    sqlite3_bind_blob(pStmt, 2, z, n, SQLITE_STATIC);
    sqlite3_step(pStmt);
    rc = sqlite3_reset(pStmt);
    sqlite3_bind_null(pStmt, 2);
  }
  return rc;
}

/*
** Find the largest relative level number in the table. If successful, set
** *pnMax to this value and return SQLITE_OK. Otherwise, if an error occurs,
1960
1961
1962
1963
1964
1965
1966

1967
1968
1969
1970
1971
1972
1973
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990







+







      char *zEnd = sqlite3_mprintf("%lld %lld", iEndBlock, nLeafData);
      if( !zEnd ) return SQLITE_NOMEM;
      sqlite3_bind_text(pStmt, 5, zEnd, -1, sqlite3_free);
    }
    sqlite3_bind_blob(pStmt, 6, zRoot, nRoot, SQLITE_STATIC);
    sqlite3_step(pStmt);
    rc = sqlite3_reset(pStmt);
    sqlite3_bind_null(pStmt, 6);
  }
  return rc;
}

/*
** Return the size of the common prefix (if any) shared by zPrev and
** zNext, in bytes. For example, 
2010
2011
2012
2013
2014
2015
2016





2017
2018
2019
2020
2021
2022
2023
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045







+
+
+
+
+







    int nData = pTree->nData;     /* Current size of node in bytes */
    int nReq = nData;             /* Required space after adding zTerm */
    int nPrefix;                  /* Number of bytes of prefix compression */
    int nSuffix;                  /* Suffix length */

    nPrefix = fts3PrefixCompress(pTree->zTerm, pTree->nTerm, zTerm, nTerm);
    nSuffix = nTerm-nPrefix;

    /* If nSuffix is zero or less, then zTerm/nTerm must be a prefix of 
    ** pWriter->zTerm/pWriter->nTerm. i.e. must be equal to or less than when
    ** compared with BINARY collation. This indicates corruption.  */
    if( nSuffix<=0 ) return FTS_CORRUPT_VTAB;

    nReq += sqlite3Fts3VarintLen(nPrefix)+sqlite3Fts3VarintLen(nSuffix)+nSuffix;
    if( nReq<=p->nNodeSize || !pTree->zTerm ){

      if( nReq>p->nNodeSize ){
        /* An unusual case: this is the first term to be added to the node
        ** and the static node buffer (p->nNodeSize bytes) is not large
2238
2239
2240
2241
2242
2243
2244





2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256

2257
2258
2259
2260
2261
2262
2263
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291







+
+
+
+
+












+







    rc = sqlite3_reset(pStmt);
    if( rc!=SQLITE_OK ) return rc;
  }
  nData = pWriter->nData;

  nPrefix = fts3PrefixCompress(pWriter->zTerm, pWriter->nTerm, zTerm, nTerm);
  nSuffix = nTerm-nPrefix;

  /* If nSuffix is zero or less, then zTerm/nTerm must be a prefix of 
  ** pWriter->zTerm/pWriter->nTerm. i.e. must be equal to or less than when
  ** compared with BINARY collation. This indicates corruption.  */
  if( nSuffix<=0 ) return FTS_CORRUPT_VTAB;

  /* Figure out how many bytes are required by this new entry */
  nReq = sqlite3Fts3VarintLen(nPrefix) +    /* varint containing prefix size */
    sqlite3Fts3VarintLen(nSuffix) +         /* varint containing suffix size */
    nSuffix +                               /* Term suffix */
    sqlite3Fts3VarintLen(nDoclist) +        /* Size of doclist */
    nDoclist;                               /* Doclist data */

  if( nData>0 && nData+nReq>p->nNodeSize ){
    int rc;

    /* The current leaf node is full. Write it out to the database. */
    if( pWriter->iFree==LARGEST_INT64 ) return FTS_CORRUPT_VTAB;
    rc = fts3WriteSegment(p, pWriter->iFree++, pWriter->aData, nData);
    if( rc!=SQLITE_OK ) return rc;
    p->nLeafAdd++;

    /* Add the current term to the interior node tree. The term added to
    ** the interior tree must:
    **
2299
2300
2301
2302
2303
2304
2305

2306
2307
2308

2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327

2328
2329
2330
2331
2332
2333
2334
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365







+



+



















+







    pWriter->nSize = nReq;
  }
  assert( nData+nReq<=pWriter->nSize );

  /* Append the prefix-compressed term and doclist to the buffer. */
  nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nPrefix);
  nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nSuffix);
  assert( nSuffix>0 );
  memcpy(&pWriter->aData[nData], &zTerm[nPrefix], nSuffix);
  nData += nSuffix;
  nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nDoclist);
  assert( nDoclist>0 );
  memcpy(&pWriter->aData[nData], aDoclist, nDoclist);
  pWriter->nData = nData + nDoclist;

  /* Save the current term so that it can be used to prefix-compress the next.
  ** If the isCopyTerm parameter is true, then the buffer pointed to by
  ** zTerm is transient, so take a copy of the term data. Otherwise, just
  ** store a copy of the pointer.
  */
  if( isCopyTerm ){
    if( nTerm>pWriter->nMalloc ){
      char *zNew = sqlite3_realloc(pWriter->zMalloc, nTerm*2);
      if( !zNew ){
        return SQLITE_NOMEM;
      }
      pWriter->nMalloc = nTerm*2;
      pWriter->zMalloc = zNew;
      pWriter->zTerm = zNew;
    }
    assert( pWriter->zTerm==pWriter->zMalloc );
    assert( nTerm>0 );
    memcpy(pWriter->zTerm, zTerm, nTerm);
  }else{
    pWriter->zTerm = (char *)zTerm;
  }
  pWriter->nTerm = nTerm;

  return SQLITE_OK;
2595
2596
2597
2598
2599
2600
2601
2602

2603
2604
2605
2606
2607
2608
2609

2610
2611
2612
2613
2614
2615
2616
2626
2627
2628
2629
2630
2631
2632

2633
2634
2635
2636
2637
2638
2639

2640
2641
2642
2643
2644
2645
2646
2647







-
+






-
+







    if( iCol==iCurrent ){
      nList = (int)(p - pList);
      break;
    }

    nList -= (int)(p - pList);
    pList = p;
    if( nList==0 ){
    if( nList<=0 ){
      break;
    }
    p = &pList[1];
    p += fts3GetVarint32(p, &iCurrent);
  }

  if( bZero && &pList[nList]!=pEnd ){
  if( bZero && (pEnd - &pList[nList])>0){
    memset(&pList[nList], 0, pEnd - &pList[nList]);
  }
  *ppList = pList;
  *pnList = nList;
}

/*
2629
2630
2631
2632
2633
2634
2635

2636
2637
2638
2639
2640
2641
2642
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674







+







    char *pNew;
    pMsr->nBuffer = nList*2;
    pNew = (char *)sqlite3_realloc(pMsr->aBuffer, pMsr->nBuffer);
    if( !pNew ) return SQLITE_NOMEM;
    pMsr->aBuffer = pNew;
  }

  assert( nList>0 );
  memcpy(pMsr->aBuffer, pList, nList);
  return SQLITE_OK;
}

int sqlite3Fts3MsrIncrNext(
  Fts3Table *p,                   /* Virtual table handle */
  Fts3MultiSegReader *pMsr,       /* Multi-segment-reader handle */
2942
2943
2944
2945
2946
2947
2948

2949

2950

2951

2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2974
2975
2976
2977
2978
2979
2980
2981

2982
2983
2984

2985
2986


2987
2988
2989
2990
2991
2992
2993







+
-
+

+
-
+

-
-








        if( !isIgnoreEmpty || nList>0 ){

          /* Calculate the 'docid' delta value to write into the merged 
          ** doclist. */
          sqlite3_int64 iDelta;
          if( p->bDescIdx && nDoclist>0 ){
            if( iPrev<=iDocid ) return FTS_CORRUPT_VTAB;
            iDelta = iPrev - iDocid;
            iDelta = (i64)((u64)iPrev - (u64)iDocid);
          }else{
            if( nDoclist>0 && iPrev>=iDocid ) return FTS_CORRUPT_VTAB;
            iDelta = iDocid - iPrev;
            iDelta = (i64)((u64)iDocid - (u64)iPrev);
          }
          assert( iDelta>0 || (nDoclist==0 && iDelta==iDocid) );
          assert( nDoclist>0 || iDelta==iDocid );

          nByte = sqlite3Fts3VarintLen(iDelta) + (isRequirePos?nList+1:0);
          if( nDoclist+nByte>pCsr->nBuffer ){
            char *aNew;
            pCsr->nBuffer = (nDoclist+nByte)*2;
            aNew = sqlite3_realloc(pCsr->aBuffer, pCsr->nBuffer);
            if( !aNew ){
3212
3213
3214
3215
3216
3217
3218
3219
3220




3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234

3235
3236
3237
3238
3239
3240
3241
3244
3245
3246
3247
3248
3249
3250


3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267

3268
3269
3270
3271
3272
3273
3274
3275







-
-
+
+
+
+













-
+







    iNewLevel = getAbsoluteLevel(p, iLangid, iIndex, iLevel+1);
    rc = fts3AllocateSegdirIdx(p, iLangid, iIndex, iLevel+1, &iIdx);
    bIgnoreEmpty = (iLevel!=FTS3_SEGCURSOR_PENDING) && (iNewLevel>iMaxLevel);
  }
  if( rc!=SQLITE_OK ) goto finished;

  assert( csr.nSegment>0 );
  assert( iNewLevel>=getAbsoluteLevel(p, iLangid, iIndex, 0) );
  assert( iNewLevel<getAbsoluteLevel(p, iLangid, iIndex,FTS3_SEGDIR_MAXLEVEL) );
  assert_fts3_nc( iNewLevel>=getAbsoluteLevel(p, iLangid, iIndex, 0) );
  assert_fts3_nc( 
    iNewLevel<getAbsoluteLevel(p, iLangid, iIndex,FTS3_SEGDIR_MAXLEVEL) 
  );

  memset(&filter, 0, sizeof(Fts3SegFilter));
  filter.flags = FTS3_SEGMENT_REQUIRE_POS;
  filter.flags |= (bIgnoreEmpty ? FTS3_SEGMENT_IGNORE_EMPTY : 0);

  rc = sqlite3Fts3SegReaderStart(p, &csr, &filter);
  while( SQLITE_OK==rc ){
    rc = sqlite3Fts3SegReaderStep(p, &csr);
    if( rc!=SQLITE_ROW ) break;
    rc = fts3SegWriterAdd(p, &pWriter, 1, 
        csr.zTerm, csr.nTerm, csr.aDoclist, csr.nDoclist);
  }
  if( rc!=SQLITE_OK ) goto finished;
  assert( pWriter || bIgnoreEmpty );
  assert_fts3_nc( pWriter || bIgnoreEmpty );

  if( iLevel!=FTS3_SEGCURSOR_PENDING ){
    rc = fts3DeleteSegdir(
        p, iLangid, iIndex, iLevel, csr.apSegment, csr.nSegment
    );
    if( rc!=SQLITE_OK ) goto finished;
  }
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323






3324
3325
3326




3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345

3346
3347
3348
3349
3350
3351
3352
3346
3347
3348
3349
3350
3351
3352





3353
3354
3355
3356
3357
3358



3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380

3381
3382
3383
3384
3385
3386
3387
3388







-
-
-
-
-
+
+
+
+
+
+
-
-
-
+
+
+
+


















-
+







*/
static void fts3DecodeIntArray(
  int N,             /* The number of integers to decode */
  u32 *a,            /* Write the integer values */
  const char *zBuf,  /* The BLOB containing the varints */
  int nBuf           /* size of the BLOB */
){
  int i, j;
  UNUSED_PARAMETER(nBuf);
  for(i=j=0; i<N; i++){
    sqlite3_int64 x;
    j += sqlite3Fts3GetVarint(&zBuf[j], &x);
  int i = 0;
  if( nBuf && (zBuf[nBuf-1]&0x80)==0 ){
    int j;
    for(i=j=0; i<N && j<nBuf; i++){
      sqlite3_int64 x;
      j += sqlite3Fts3GetVarint(&zBuf[j], &x);
    assert(j<=nBuf);
    a[i] = (u32)(x & 0xffffffff);
  }
      a[i] = (u32)(x & 0xffffffff);
    }
  }
  while( i<N ) a[i++] = 0;
}

/*
** Insert the sizes (in tokens) for each column of the document
** with docid equal to p->iPrevDocid.  The sizes are encoded as
** a blob of varints.
*/
static void fts3InsertDocsize(
  int *pRC,                       /* Result code */
  Fts3Table *p,                   /* Table into which to insert */
  u32 *aSz                        /* Sizes of each column, in tokens */
){
  char *pBlob;             /* The BLOB encoding of the document size */
  int nBlob;               /* Number of bytes in the BLOB */
  sqlite3_stmt *pStmt;     /* Statement used to insert the encoding */
  int rc;                  /* Result code from subfunctions */

  if( *pRC ) return;
  pBlob = sqlite3_malloc( 10*p->nColumn );
  pBlob = sqlite3_malloc64( 10*(sqlite3_int64)p->nColumn );
  if( pBlob==0 ){
    *pRC = SQLITE_NOMEM;
    return;
  }
  fts3EncodeIntArray(p->nColumn, aSz, pBlob, &nBlob);
  rc = fts3SqlStmt(p, SQL_REPLACE_DOCSIZE, &pStmt, 0);
  if( rc ){
3388
3389
3390
3391
3392
3393
3394
3395

3396
3397
3398
3399
3400
3401
3402
3424
3425
3426
3427
3428
3429
3430

3431
3432
3433
3434
3435
3436
3437
3438







-
+







  sqlite3_stmt *pStmt;     /* Statement for reading and writing */
  int i;                   /* Loop counter */
  int rc;                  /* Result code from subfunctions */

  const int nStat = p->nColumn+2;

  if( *pRC ) return;
  a = sqlite3_malloc( (sizeof(u32)+10)*nStat );
  a = sqlite3_malloc64( (sizeof(u32)+10)*(sqlite3_int64)nStat );
  if( a==0 ){
    *pRC = SQLITE_NOMEM;
    return;
  }
  pBlob = (char*)&a[nStat];
  rc = fts3SqlStmt(p, SQL_SELECT_STAT, &pStmt, 0);
  if( rc ){
3439
3440
3441
3442
3443
3444
3445

3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457


3458


3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496

3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518

3519
3520
3521
3522
3523
3524
3525







+












+
+
-
+
+




















-







    *pRC = rc;
    return;
  }
  sqlite3_bind_int(pStmt, 1, FTS_STAT_DOCTOTAL);
  sqlite3_bind_blob(pStmt, 2, pBlob, nBlob, SQLITE_STATIC);
  sqlite3_step(pStmt);
  *pRC = sqlite3_reset(pStmt);
  sqlite3_bind_null(pStmt, 2);
  sqlite3_free(a);
}

/*
** Merge the entire database so that there is one segment for each 
** iIndex/iLangid combination.
*/
static int fts3DoOptimize(Fts3Table *p, int bReturnDone){
  int bSeenDone = 0;
  int rc;
  sqlite3_stmt *pAllLangid = 0;

  rc = sqlite3Fts3PendingTermsFlush(p);
  if( rc==SQLITE_OK ){
  rc = fts3SqlStmt(p, SQL_SELECT_ALL_LANGID, &pAllLangid, 0);
    rc = fts3SqlStmt(p, SQL_SELECT_ALL_LANGID, &pAllLangid, 0);
  }
  if( rc==SQLITE_OK ){
    int rc2;
    sqlite3_bind_int(pAllLangid, 1, p->iPrevLangid);
    sqlite3_bind_int(pAllLangid, 2, p->nIndex);
    while( sqlite3_step(pAllLangid)==SQLITE_ROW ){
      int i;
      int iLangid = sqlite3_column_int(pAllLangid, 0);
      for(i=0; rc==SQLITE_OK && i<p->nIndex; i++){
        rc = fts3SegmentMerge(p, iLangid, i, FTS3_SEGCURSOR_ALL);
        if( rc==SQLITE_DONE ){
          bSeenDone = 1;
          rc = SQLITE_OK;
        }
      }
    }
    rc2 = sqlite3_reset(pAllLangid);
    if( rc==SQLITE_OK ) rc = rc2;
  }

  sqlite3Fts3SegmentsClose(p);
  sqlite3Fts3PendingTermsClear(p);

  return (rc==SQLITE_OK && bReturnDone && bSeenDone) ? SQLITE_DONE : rc;
}

/*
** This function is called when the user executes the following statement:
**
3508
3509
3510
3511
3512
3513
3514
3515
3516


3517
3518
3519
3520
3521
3522
3523
3547
3548
3549
3550
3551
3552
3553


3554
3555
3556
3557
3558
3559
3560
3561
3562







-
-
+
+







      rc = SQLITE_NOMEM;
    }else{
      rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0);
      sqlite3_free(zSql);
    }

    if( rc==SQLITE_OK ){
      int nByte = sizeof(u32) * (p->nColumn+1)*3;
      aSz = (u32 *)sqlite3_malloc(nByte);
      sqlite3_int64 nByte = sizeof(u32) * ((sqlite3_int64)p->nColumn+1)*3;
      aSz = (u32 *)sqlite3_malloc64(nByte);
      if( aSz==0 ){
        rc = SQLITE_NOMEM;
      }else{
        memset(aSz, 0, nByte);
        aSzIns = &aSz[p->nColumn+1];
        aSzDel = &aSzIns[p->nColumn+1];
      }
3575
3576
3577
3578
3579
3580
3581
3582

3583
3584
3585
3586
3587

3588
3589
3590
3591
3592
3593
3594
3614
3615
3616
3617
3618
3619
3620

3621
3622
3623
3624
3625

3626
3627
3628
3629
3630
3631
3632
3633







-
+




-
+







  Fts3Table *p,                   /* FTS3 table handle */
  sqlite3_int64 iAbsLevel,        /* Absolute level to open */
  int nSeg,                       /* Number of segments to merge */
  Fts3MultiSegReader *pCsr        /* Cursor object to populate */
){
  int rc;                         /* Return Code */
  sqlite3_stmt *pStmt = 0;        /* Statement used to read %_segdir entry */  
  int nByte;                      /* Bytes allocated at pCsr->apSegment[] */
  sqlite3_int64 nByte;            /* Bytes allocated at pCsr->apSegment[] */

  /* Allocate space for the Fts3MultiSegReader.aCsr[] array */
  memset(pCsr, 0, sizeof(*pCsr));
  nByte = sizeof(Fts3SegReader *) * nSeg;
  pCsr->apSegment = (Fts3SegReader **)sqlite3_malloc(nByte);
  pCsr->apSegment = (Fts3SegReader **)sqlite3_malloc64(nByte);

  if( pCsr->apSegment==0 ){
    rc = SQLITE_NOMEM;
  }else{
    memset(pCsr->apSegment, 0, nByte);
    rc = fts3SqlStmt(p, SQL_SELECT_LEVEL, &pStmt, 0);
  }
3723
3724
3725
3726
3727
3728
3729



3730
3731
3732
3733
3734
3735
3736



3737
3738
3739
3740
3741
3742
3743

3744
3745
3746
3747
3748
3749
3750
3751
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787

3788

3789
3790
3791
3792
3793
3794
3795







+
+
+







+
+
+






-
+
-







    p->aNode = 0;
  }else{
    if( bFirst==0 ){
      p->iOff += fts3GetVarint32(&p->aNode[p->iOff], &nPrefix);
    }
    p->iOff += fts3GetVarint32(&p->aNode[p->iOff], &nSuffix);

    if( nPrefix>p->term.n || nSuffix>p->nNode-p->iOff || nSuffix==0 ){
      return FTS_CORRUPT_VTAB;
    }
    blobGrowBuffer(&p->term, nPrefix+nSuffix, &rc);
    if( rc==SQLITE_OK ){
      memcpy(&p->term.a[nPrefix], &p->aNode[p->iOff], nSuffix);
      p->term.n = nPrefix+nSuffix;
      p->iOff += nSuffix;
      if( p->iChild==0 ){
        p->iOff += fts3GetVarint32(&p->aNode[p->iOff], &p->nDoclist);
        if( (p->nNode-p->iOff)<p->nDoclist ){
          return FTS_CORRUPT_VTAB;
        }
        p->aDoclist = &p->aNode[p->iOff];
        p->iOff += p->nDoclist;
      }
    }
  }

  assert( p->iOff<=p->nNode );
  assert_fts3_nc( p->iOff<=p->nNode );

  return rc;
}

/*
** Release all dynamic resources held by node-reader object *p.
*/
static void nodeReaderRelease(NodeReader *p){
3761
3762
3763
3764
3765
3766
3767
3768

3769
3770
3771
3772
3773
3774
3775

3776
3777
3778
3779
3780
3781
3782
3805
3806
3807
3808
3809
3810
3811

3812
3813
3814
3815
3816
3817
3818

3819
3820
3821
3822
3823
3824
3825
3826







-
+






-
+







*/
static int nodeReaderInit(NodeReader *p, const char *aNode, int nNode){
  memset(p, 0, sizeof(NodeReader));
  p->aNode = aNode;
  p->nNode = nNode;

  /* Figure out if this is a leaf or an internal node. */
  if( p->aNode[0] ){
  if( aNode && aNode[0] ){
    /* An internal node. */
    p->iOff = 1 + sqlite3Fts3GetVarint(&p->aNode[1], &p->iChild);
  }else{
    p->iOff = 1;
  }

  return nodeReaderNext(p);
  return aNode ? nodeReaderNext(p) : SQLITE_OK;
}

/*
** This function is called while writing an FTS segment each time a leaf o
** node is finished and written to disk. The key (zTerm/nTerm) is guaranteed
** to be greater than the largest key on the node just written, but smaller
** than or equal to the first key that will be written to the next leaf
3805
3806
3807
3808
3809
3810
3811

3812
3813
3814
3815
3816
3817
3818
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863







+








    /* Figure out how much space the key will consume if it is written to
    ** the current node of layer iLayer. Due to the prefix compression, 
    ** the space required changes depending on which node the key is to
    ** be added to.  */
    nPrefix = fts3PrefixCompress(pNode->key.a, pNode->key.n, zTerm, nTerm);
    nSuffix = nTerm - nPrefix;
    if(nSuffix<=0 ) return FTS_CORRUPT_VTAB;
    nSpace  = sqlite3Fts3VarintLen(nPrefix);
    nSpace += sqlite3Fts3VarintLen(nSuffix) + nSuffix;

    if( pNode->key.n==0 || (pNode->block.n + nSpace)<=p->nNodeSize ){ 
      /* If the current node of layer iLayer contains zero keys, or if adding
      ** the key to it will not cause it to grow to larger than nNodeSize 
      ** bytes in size, write the key here.  */
3898
3899
3900
3901
3902
3903
3904
3905

3906
3907
3908
3909
3910
3911

3912
3913
3914
3915
3916
3917
3918
3943
3944
3945
3946
3947
3948
3949

3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964







-
+






+







  int bFirst = (pPrev->n==0);     /* True if this is the first term written */
  int nPrefix;                    /* Size of term prefix in bytes */
  int nSuffix;                    /* Size of term suffix in bytes */

  /* Node must have already been started. There must be a doclist for a
  ** leaf node, and there must not be a doclist for an internal node.  */
  assert( pNode->n>0 );
  assert( (pNode->a[0]=='\0')==(aDoclist!=0) );
  assert_fts3_nc( (pNode->a[0]=='\0')==(aDoclist!=0) );

  blobGrowBuffer(pPrev, nTerm, &rc);
  if( rc!=SQLITE_OK ) return rc;

  nPrefix = fts3PrefixCompress(pPrev->a, pPrev->n, zTerm, nTerm);
  nSuffix = nTerm - nPrefix;
  if( nSuffix<=0 ) return FTS_CORRUPT_VTAB;
  memcpy(pPrev->a, zTerm, nTerm);
  pPrev->n = nTerm;

  if( bFirst==0 ){
    pNode->n += sqlite3Fts3PutVarint(&pNode->a[pNode->n], nPrefix);
  }
  pNode->n += sqlite3Fts3PutVarint(&pNode->a[pNode->n], nSuffix);
4114
4115
4116
4117
4118
4119
4120
4121

4122
4123
4124
4125
4126
4127
4128
4160
4161
4162
4163
4164
4165
4166

4167
4168
4169
4170
4171
4172
4173
4174







-
+







static int fts3TermCmp(
  const char *zLhs, int nLhs,     /* LHS of comparison */
  const char *zRhs, int nRhs      /* RHS of comparison */
){
  int nCmp = MIN(nLhs, nRhs);
  int res;

  res = memcmp(zLhs, zRhs, nCmp);
  res = (nCmp ? memcmp(zLhs, zRhs, nCmp) : 0);
  if( res==0 ) res = nLhs - nRhs;

  return res;
}


/*
4198
4199
4200
4201
4202
4203
4204




4205
4206
4207
4208
4209
4210
4211
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261







+
+
+
+







      fts3ReadEndBlockField(pSelect, 3, &iEnd, &pWriter->nLeafData);
      if( pWriter->nLeafData<0 ){
        pWriter->nLeafData = pWriter->nLeafData * -1;
      }
      pWriter->bNoLeafData = (pWriter->nLeafData==0);
      nRoot = sqlite3_column_bytes(pSelect, 4);
      aRoot = sqlite3_column_blob(pSelect, 4);
      if( aRoot==0 ){
        sqlite3_reset(pSelect);
        return nRoot ? SQLITE_NOMEM : FTS_CORRUPT_VTAB;
      }
    }else{
      return sqlite3_reset(pSelect);
    }

    /* Check for the zero-length marker in the %_segments table */
    rc = fts3IsAppendable(p, iEnd, &bAppendable);

4233
4234
4235
4236
4237
4238
4239




4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253



4254
4255
4256

4257
4258
4259
4260
4261
4262

4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280






















4281
4282
4283
4284
4285
4286
4287
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306

4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320


















4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349







+
+
+
+













-
+
+
+



+






+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+








    if( rc==SQLITE_OK && bAppendable ){
      /* It is possible to append to this segment. Set up the IncrmergeWriter
      ** object to do so.  */
      int i;
      int nHeight = (int)aRoot[0];
      NodeWriter *pNode;
      if( nHeight<1 || nHeight>FTS_MAX_APPENDABLE_HEIGHT ){
        sqlite3_reset(pSelect);
        return FTS_CORRUPT_VTAB;
      }

      pWriter->nLeafEst = (int)((iEnd - iStart) + 1)/FTS_MAX_APPENDABLE_HEIGHT;
      pWriter->iStart = iStart;
      pWriter->iEnd = iEnd;
      pWriter->iAbsLevel = iAbsLevel;
      pWriter->iIdx = iIdx;

      for(i=nHeight+1; i<FTS_MAX_APPENDABLE_HEIGHT; i++){
        pWriter->aNodeWriter[i].iBlock = pWriter->iStart + i*pWriter->nLeafEst;
      }

      pNode = &pWriter->aNodeWriter[nHeight];
      pNode->iBlock = pWriter->iStart + pWriter->nLeafEst*nHeight;
      blobGrowBuffer(&pNode->block, MAX(nRoot, p->nNodeSize), &rc);
      blobGrowBuffer(&pNode->block, 
          MAX(nRoot, p->nNodeSize)+FTS3_NODE_PADDING, &rc
      );
      if( rc==SQLITE_OK ){
        memcpy(pNode->block.a, aRoot, nRoot);
        pNode->block.n = nRoot;
        memset(&pNode->block.a[nRoot], 0, FTS3_NODE_PADDING);
      }

      for(i=nHeight; i>=0 && rc==SQLITE_OK; i--){
        NodeReader reader;
        pNode = &pWriter->aNodeWriter[i];

        if( pNode->block.a){
        rc = nodeReaderInit(&reader, pNode->block.a, pNode->block.n);
        while( reader.aNode && rc==SQLITE_OK ) rc = nodeReaderNext(&reader);
        blobGrowBuffer(&pNode->key, reader.term.n, &rc);
        if( rc==SQLITE_OK ){
          memcpy(pNode->key.a, reader.term.a, reader.term.n);
          pNode->key.n = reader.term.n;
          if( i>0 ){
            char *aBlock = 0;
            int nBlock = 0;
            pNode = &pWriter->aNodeWriter[i-1];
            pNode->iBlock = reader.iChild;
            rc = sqlite3Fts3ReadBlock(p, reader.iChild, &aBlock, &nBlock, 0);
            blobGrowBuffer(&pNode->block, MAX(nBlock, p->nNodeSize), &rc);
            if( rc==SQLITE_OK ){
              memcpy(pNode->block.a, aBlock, nBlock);
              pNode->block.n = nBlock;
            }
            sqlite3_free(aBlock);
          rc = nodeReaderInit(&reader, pNode->block.a, pNode->block.n);
          while( reader.aNode && rc==SQLITE_OK ) rc = nodeReaderNext(&reader);
          blobGrowBuffer(&pNode->key, reader.term.n, &rc);
          if( rc==SQLITE_OK ){
            memcpy(pNode->key.a, reader.term.a, reader.term.n);
            pNode->key.n = reader.term.n;
            if( i>0 ){
              char *aBlock = 0;
              int nBlock = 0;
              pNode = &pWriter->aNodeWriter[i-1];
              pNode->iBlock = reader.iChild;
              rc = sqlite3Fts3ReadBlock(p, reader.iChild, &aBlock, &nBlock, 0);
              blobGrowBuffer(&pNode->block, 
                  MAX(nBlock, p->nNodeSize)+FTS3_NODE_PADDING, &rc
              );
              if( rc==SQLITE_OK ){
                memcpy(pNode->block.a, aBlock, nBlock);
                pNode->block.n = nBlock;
                memset(&pNode->block.a[nBlock], 0, FTS3_NODE_PADDING);
              }
              sqlite3_free(aBlock);
            }
          }
        }
        nodeReaderRelease(&reader);
      }
    }

    rc2 = sqlite3_reset(pSelect);
4516
4517
4518
4519
4520
4521
4522



4523

4524
4525
4526
4527
4528
4529
4530
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587

4588
4589
4590
4591
4592
4593
4594
4595







+
+
+
-
+







  const char *zTerm,              /* Omit all terms smaller than this */
  int nTerm,                      /* Size of zTerm in bytes */
  sqlite3_int64 *piBlock          /* OUT: Block number in next layer down */
){
  NodeReader reader;              /* Reader object */
  Blob prev = {0, 0, 0};          /* Previous term written to new node */
  int rc = SQLITE_OK;             /* Return code */
  int bLeaf;                       /* True for a leaf node */

  if( nNode<1 ) return FTS_CORRUPT_VTAB;
  int bLeaf = aNode[0]=='\0';     /* True for a leaf node */
  bLeaf = aNode[0]=='\0';

  /* Allocate required output space */
  blobGrowBuffer(pNew, nNode, &rc);
  if( rc!=SQLITE_OK ) return rc;
  pNew->n = 0;

  /* Populate new node buffer */
4627
4628
4629
4630
4631
4632
4633

4634
4635
4636
4637
4638
4639
4640
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706







+







    if( rc==SQLITE_OK ){
      sqlite3_bind_int64(pChomp, 1, iNewStart);
      sqlite3_bind_blob(pChomp, 2, root.a, root.n, SQLITE_STATIC);
      sqlite3_bind_int64(pChomp, 3, iAbsLevel);
      sqlite3_bind_int(pChomp, 4, iIdx);
      sqlite3_step(pChomp);
      rc = sqlite3_reset(pChomp);
      sqlite3_bind_null(pChomp, 2);
    }
  }

  sqlite3_free(root.a);
  sqlite3_free(block.a);
  return rc;
}
4706
4707
4708
4709
4710
4711
4712

4713
4714
4715
4716
4717
4718
4719
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786







+








  rc = fts3SqlStmt(p, SQL_REPLACE_STAT, &pReplace, 0);
  if( rc==SQLITE_OK ){
    sqlite3_bind_int(pReplace, 1, FTS_STAT_INCRMERGEHINT);
    sqlite3_bind_blob(pReplace, 2, pHint->a, pHint->n, SQLITE_STATIC);
    sqlite3_step(pReplace);
    rc = sqlite3_reset(pReplace);
    sqlite3_bind_null(pReplace, 2);
  }

  return rc;
}

/*
** Load an incr-merge hint from the database. The incr-merge hint, if one 
4780
4781
4782
4783
4784
4785
4786
4787


4788


4789
4790
4791
4792
4793

4794
4795
4796
4797
4798
4799
4800
4847
4848
4849
4850
4851
4852
4853

4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871







-
+
+

+
+





+







** If no error occurs, return SQLITE_OK. If the hint blob in *pHint does
** not contain at least two valid varints, return SQLITE_CORRUPT_VTAB.
*/
static int fts3IncrmergeHintPop(Blob *pHint, i64 *piAbsLevel, int *pnInput){
  const int nHint = pHint->n;
  int i;

  i = pHint->n-2;
  i = pHint->n-1;
  if( (pHint->a[i] & 0x80) ) return FTS_CORRUPT_VTAB;
  while( i>0 && (pHint->a[i-1] & 0x80) ) i--;
  if( i==0 ) return FTS_CORRUPT_VTAB;
  i--;
  while( i>0 && (pHint->a[i-1] & 0x80) ) i--;

  pHint->n = i;
  i += sqlite3Fts3GetVarint(&pHint->a[i], piAbsLevel);
  i += fts3GetVarint32(&pHint->a[i], pnInput);
  assert( i<=nHint );
  if( i!=nHint ) return FTS_CORRUPT_VTAB;

  return SQLITE_OK;
}


/*
4856
4857
4858
4859
4860
4861
4862






4863
4864

4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877

4878
4879
4880
4881
4882
4883
4884
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940

4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953

4954
4955
4956
4957
4958
4959
4960
4961







+
+
+
+
+
+

-
+












-
+







    if( rc==SQLITE_OK && hint.n ){
      int nHint = hint.n;
      sqlite3_int64 iHintAbsLevel = 0;      /* Hint level */
      int nHintSeg = 0;                     /* Hint number of segments */

      rc = fts3IncrmergeHintPop(&hint, &iHintAbsLevel, &nHintSeg);
      if( nSeg<0 || (iAbsLevel % nMod) >= (iHintAbsLevel % nMod) ){
        /* Based on the scan in the block above, it is known that there
        ** are no levels with a relative level smaller than that of
        ** iAbsLevel with more than nSeg segments, or if nSeg is -1, 
        ** no levels with more than nMin segments. Use this to limit the
        ** value of nHintSeg to avoid a large memory allocation in case the 
        ** merge-hint is corrupt*/
        iAbsLevel = iHintAbsLevel;
        nSeg = nHintSeg;
        nSeg = MIN(MAX(nMin,nSeg), nHintSeg);
        bUseHint = 1;
        bDirtyHint = 1;
      }else{
        /* This undoes the effect of the HintPop() above - so that no entry
        ** is removed from the hint blob.  */
        hint.n = nHint;
      }
    }

    /* If nSeg is less that zero, then there is no level with at least
    ** nMin segments and no hint in the %_stat table. No work to do.
    ** Exit early in this case.  */
    if( nSeg<0 ) break;
    if( nSeg<=0 ) break;

    /* Open a cursor to iterate through the contents of the oldest nSeg 
    ** indexes of absolute level iAbsLevel. If this cursor is opened using 
    ** the 'hint' parameters, it is possible that there are less than nSeg
    ** segments available in level iAbsLevel. In this case, no work is
    ** done on iAbsLevel - fall through to the next iteration of the loop 
    ** to start work on some other level.  */
4898
4899
4900
4901
4902
4903
4904
4905
4906








4907
4908
4909
4910
4911
4912
4913
4914
4915
4916

4917
4918
4919
4920
4921






4922
4923
4924
4925
4926
4927
4928
4975
4976
4977
4978
4979
4980
4981

4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001





5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014







-

+
+
+
+
+
+
+
+










+
-
-
-
-
-
+
+
+
+
+
+







    }

    if( rc==SQLITE_OK ){
      rc = fts3IncrmergeCsr(p, iAbsLevel, nSeg, pCsr);
    }
    if( SQLITE_OK==rc && pCsr->nSegment==nSeg
     && SQLITE_OK==(rc = sqlite3Fts3SegReaderStart(p, pCsr, pFilter))
     && SQLITE_ROW==(rc = sqlite3Fts3SegReaderStep(p, pCsr))
    ){
      int bEmpty = 0;
      rc = sqlite3Fts3SegReaderStep(p, pCsr);
      if( rc==SQLITE_OK ){
        bEmpty = 1;
      }else if( rc!=SQLITE_ROW ){
        sqlite3Fts3SegReaderFinish(pCsr);
        break;
      }
      if( bUseHint && iIdx>0 ){
        const char *zKey = pCsr->zTerm;
        int nKey = pCsr->nTerm;
        rc = fts3IncrmergeLoad(p, iAbsLevel, iIdx-1, zKey, nKey, pWriter);
      }else{
        rc = fts3IncrmergeWriter(p, iAbsLevel, iIdx, pCsr, pWriter);
      }

      if( rc==SQLITE_OK && pWriter->nLeafEst ){
        fts3LogMerge(nSeg, iAbsLevel);
        if( bEmpty==0 ){
        do {
          rc = fts3IncrmergeAppend(p, pWriter, pCsr);
          if( rc==SQLITE_OK ) rc = sqlite3Fts3SegReaderStep(p, pCsr);
          if( pWriter->nWork>=nRem && rc==SQLITE_ROW ) rc = SQLITE_OK;
        }while( rc==SQLITE_ROW );
          do {
            rc = fts3IncrmergeAppend(p, pWriter, pCsr);
            if( rc==SQLITE_OK ) rc = sqlite3Fts3SegReaderStep(p, pCsr);
            if( pWriter->nWork>=nRem && rc==SQLITE_ROW ) rc = SQLITE_OK;
          }while( rc==SQLITE_ROW );
        }

        /* Update or delete the input segments */
        if( rc==SQLITE_OK ){
          nRem -= (1 + pWriter->nWork);
          rc = fts3IncrmergeChomp(p, iAbsLevel, pCsr, &nSeg);
          if( nSeg!=0 ){
            bDirtyHint = 1;
4979
4980
4981
4982
4983
4984
4985
4986

4987
4988
4989
4990
4991
4992
4993
5065
5066
5067
5068
5069
5070
5071

5072
5073
5074
5075
5076
5077
5078
5079







-
+







** before it will be selected for a merge, respectively.
*/
static int fts3DoIncrmerge(
  Fts3Table *p,                   /* FTS3 table handle */
  const char *zParam              /* Nul-terminated string containing "A,B" */
){
  int rc;
  int nMin = (FTS3_MERGE_COUNT / 2);
  int nMin = (MergeCount(p) / 2);
  int nMerge = 0;
  const char *z = zParam;

  /* Read the first integer value */
  nMerge = fts3Getint(&z);

  /* If the first integer value is followed by a ',',  read the second
5024
5025
5026
5027
5028
5029
5030
5031

5032
5033
5034
5035
5036
5037
5038
5110
5111
5112
5113
5114
5115
5116

5117
5118
5119
5120
5121
5122
5123
5124







-
+







static int fts3DoAutoincrmerge(
  Fts3Table *p,                   /* FTS3 table handle */
  const char *zParam              /* Nul-terminated string containing boolean */
){
  int rc = SQLITE_OK;
  sqlite3_stmt *pStmt = 0;
  p->nAutoincrmerge = fts3Getint(&zParam);
  if( p->nAutoincrmerge==1 || p->nAutoincrmerge>FTS3_MERGE_COUNT ){
  if( p->nAutoincrmerge==1 || p->nAutoincrmerge>MergeCount(p) ){
    p->nAutoincrmerge = 8;
  }
  if( !p->bHasStat ){
    assert( p->bFts4==0 );
    sqlite3Fts3CreateStatTable(&rc, p);
    if( rc ) return rc;
  }
5107
5108
5109
5110
5111
5112
5113
5114

5115
5116
5117
5118
5119


5120
5121
5122
5123
5124
5125
5126
5127
5128






5129
5130
5131
5132
5133
5134
5135
5193
5194
5195
5196
5197
5198
5199

5200
5201
5202
5203


5204
5205
5206
5207
5208
5209
5210
5211
5212


5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225







-
+



-
-
+
+







-
-
+
+
+
+
+
+







  if( rc==SQLITE_OK ){
    while( SQLITE_ROW==(rc = sqlite3Fts3SegReaderStep(p, &csr)) ){
      char *pCsr = csr.aDoclist;
      char *pEnd = &pCsr[csr.nDoclist];

      i64 iDocid = 0;
      i64 iCol = 0;
      i64 iPos = 0;
      u64 iPos = 0;

      pCsr += sqlite3Fts3GetVarint(pCsr, &iDocid);
      while( pCsr<pEnd ){
        i64 iVal = 0;
        pCsr += sqlite3Fts3GetVarint(pCsr, &iVal);
        u64 iVal = 0;
        pCsr += sqlite3Fts3GetVarintU(pCsr, &iVal);
        if( pCsr<pEnd ){
          if( iVal==0 || iVal==1 ){
            iCol = 0;
            iPos = 0;
            if( iVal ){
              pCsr += sqlite3Fts3GetVarint(pCsr, &iCol);
            }else{
              pCsr += sqlite3Fts3GetVarint(pCsr, &iVal);
              iDocid += iVal;
              pCsr += sqlite3Fts3GetVarintU(pCsr, &iVal);
              if( p->bDescIdx ){
                iDocid = (i64)((u64)iDocid - iVal);
              }else{
                iDocid = (i64)((u64)iDocid + iVal);
              }
            }
          }else{
            iPos += (iVal - 2);
            cksum = cksum ^ fts3ChecksumEntry(
                csr.zTerm, csr.nTerm, iLangid, iIndex, iDocid,
                (int)iCol, (int)iPos
            );
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204

5205
5206
5207
5208
5209
5210
5211
5284
5285
5286
5287
5288
5289
5290

5291
5292

5293
5294
5295
5296
5297
5298
5299
5300







-


-
+







      i64 iDocid = sqlite3_column_int64(pStmt, 0);
      int iLang = langidFromSelect(p, pStmt);
      int iCol;

      for(iCol=0; rc==SQLITE_OK && iCol<p->nColumn; iCol++){
        if( p->abNotindexed[iCol]==0 ){
          const char *zText = (const char *)sqlite3_column_text(pStmt, iCol+1);
          int nText = sqlite3_column_bytes(pStmt, iCol+1);
          sqlite3_tokenizer_cursor *pT = 0;

          rc = sqlite3Fts3OpenTokenizer(p->pTokenizer, iLang, zText, nText,&pT);
          rc = sqlite3Fts3OpenTokenizer(p->pTokenizer, iLang, zText, -1, &pT);
          while( rc==SQLITE_OK ){
            char const *zToken;       /* Buffer containing token */
            int nToken = 0;           /* Number of bytes in token */
            int iDum1 = 0, iDum2 = 0; /* Dummy variables */
            int iPos = 0;             /* Position of token in zText */

            rc = pModule->xNext(pT, &zToken, &nToken, &iDum1, &iDum2, &iPos);
5282
5283
5284
5285
5286
5287
5288
5289

5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314














5315
5316
5317
5318
5319







5320
5321
5322
5323
5324
5325
5326
5371
5372
5373
5374
5375
5376
5377

5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393










5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407





5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421







-
+















-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
-
-
-
-
+
+
+
+
+
+
+







**
**   "INSERT INTO tbl(tbl) VALUES(<expr>)"
**
** Argument pVal contains the result of <expr>. Currently the only 
** meaningful value to insert is the text 'optimize'.
*/
static int fts3SpecialInsert(Fts3Table *p, sqlite3_value *pVal){
  int rc;                         /* Return Code */
  int rc = SQLITE_ERROR;           /* Return Code */
  const char *zVal = (const char *)sqlite3_value_text(pVal);
  int nVal = sqlite3_value_bytes(pVal);

  if( !zVal ){
    return SQLITE_NOMEM;
  }else if( nVal==8 && 0==sqlite3_strnicmp(zVal, "optimize", 8) ){
    rc = fts3DoOptimize(p, 0);
  }else if( nVal==7 && 0==sqlite3_strnicmp(zVal, "rebuild", 7) ){
    rc = fts3DoRebuild(p);
  }else if( nVal==15 && 0==sqlite3_strnicmp(zVal, "integrity-check", 15) ){
    rc = fts3DoIntegrityCheck(p);
  }else if( nVal>6 && 0==sqlite3_strnicmp(zVal, "merge=", 6) ){
    rc = fts3DoIncrmerge(p, &zVal[6]);
  }else if( nVal>10 && 0==sqlite3_strnicmp(zVal, "automerge=", 10) ){
    rc = fts3DoAutoincrmerge(p, &zVal[10]);
#ifdef SQLITE_TEST
  }else if( nVal>9 && 0==sqlite3_strnicmp(zVal, "nodesize=", 9) ){
    p->nNodeSize = atoi(&zVal[9]);
    rc = SQLITE_OK;
  }else if( nVal>11 && 0==sqlite3_strnicmp(zVal, "maxpending=", 9) ){
    p->nMaxPendingData = atoi(&zVal[11]);
    rc = SQLITE_OK;
  }else if( nVal>21 && 0==sqlite3_strnicmp(zVal, "test-no-incr-doclist=", 21) ){
    p->bNoIncrDoclist = atoi(&zVal[21]);
    rc = SQLITE_OK;
#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
  }else{
    int v;
    if( nVal>9 && 0==sqlite3_strnicmp(zVal, "nodesize=", 9) ){
      v = atoi(&zVal[9]);
      if( v>=24 && v<=p->nPgsz-35 ) p->nNodeSize = v;
      rc = SQLITE_OK;
    }else if( nVal>11 && 0==sqlite3_strnicmp(zVal, "maxpending=", 9) ){
      v = atoi(&zVal[11]);
      if( v>=64 && v<=FTS3_MAX_PENDING_DATA ) p->nMaxPendingData = v;
      rc = SQLITE_OK;
    }else if( nVal>21 && 0==sqlite3_strnicmp(zVal,"test-no-incr-doclist=",21) ){
      p->bNoIncrDoclist = atoi(&zVal[21]);
      rc = SQLITE_OK;
#endif
  }else{
    rc = SQLITE_ERROR;
  }

    }else if( nVal>11 && 0==sqlite3_strnicmp(zVal,"mergecount=",11) ){
      v = atoi(&zVal[11]);
      if( v>=4 && v<=FTS3_MERGE_COUNT && (v&1)==0 ) p->nMergeCount = v;
      rc = SQLITE_OK;
    }
#endif
  }
  return rc;
}

#ifndef SQLITE_DISABLE_FTS4_DEFERRED
/*
** Delete all cached deferred doclists. Deferred doclists are cached
** (allocated) by the sqlite3Fts3CacheDeferredDoclists() function.
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5615
5616
5617
5618
5619
5620
5621

5622
5623
5624
5625
5626
5627
5628







-







  sqlite3_vtab *pVtab,            /* FTS3 vtab object */
  int nArg,                       /* Size of argument array */
  sqlite3_value **apVal,          /* Array of arguments */
  sqlite_int64 *pRowid            /* OUT: The affected (or effected) rowid */
){
  Fts3Table *p = (Fts3Table *)pVtab;
  int rc = SQLITE_OK;             /* Return Code */
  int isRemove = 0;               /* True for an UPDATE or DELETE */
  u32 *aSzIns = 0;                /* Sizes of inserted documents */
  u32 *aSzDel = 0;                /* Sizes of deleted documents */
  int nChng = 0;                  /* Net change in number of documents */
  int bInsertDone = 0;

  /* At this point it must be known if the %_stat table exists or not.
  ** So bHasStat may not be 2.  */
5554
5555
5556
5557
5558
5559
5560
5561

5562
5563
5564
5565
5566
5567
5568
5648
5649
5650
5651
5652
5653
5654

5655
5656
5657
5658
5659
5660
5661
5662







-
+








  if( nArg>1 && sqlite3_value_int(apVal[2 + p->nColumn + 2])<0 ){
    rc = SQLITE_CONSTRAINT;
    goto update_out;
  }

  /* Allocate space to hold the change in document sizes */
  aSzDel = sqlite3_malloc( sizeof(aSzDel[0])*(p->nColumn+1)*2 );
  aSzDel = sqlite3_malloc64(sizeof(aSzDel[0])*((sqlite3_int64)p->nColumn+1)*2);
  if( aSzDel==0 ){
    rc = SQLITE_NOMEM;
    goto update_out;
  }
  aSzIns = &aSzDel[p->nColumn+1];
  memset(aSzDel, 0, sizeof(aSzDel[0])*(p->nColumn+1)*2);

5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637

5638
5639
5640
5641
5642
5643
5644
5712
5713
5714
5715
5716
5717
5718

5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729

5730
5731
5732
5733
5734
5735
5736
5737







-











-
+







    goto update_out;
  }

  /* If this is a DELETE or UPDATE operation, remove the old record. */
  if( sqlite3_value_type(apVal[0])!=SQLITE_NULL ){
    assert( sqlite3_value_type(apVal[0])==SQLITE_INTEGER );
    rc = fts3DeleteByRowid(p, apVal[0], &nChng, aSzDel);
    isRemove = 1;
  }
  
  /* If this is an INSERT or UPDATE operation, insert the new record. */
  if( nArg>1 && rc==SQLITE_OK ){
    int iLangid = sqlite3_value_int(apVal[2 + p->nColumn + 2]);
    if( bInsertDone==0 ){
      rc = fts3InsertData(p, apVal, pRowid);
      if( rc==SQLITE_CONSTRAINT && p->zContentTbl==0 ){
        rc = FTS_CORRUPT_VTAB;
      }
    }
    if( rc==SQLITE_OK && (!isRemove || *pRowid!=p->iPrevDocid ) ){
    if( rc==SQLITE_OK ){
      rc = fts3PendingTermsDocid(p, 0, iLangid, *pRowid);
    }
    if( rc==SQLITE_OK ){
      assert( p->iPrevDocid==*pRowid );
      rc = fts3InsertTerms(p, iLangid, apVal, aSzIns);
    }
    if( p->bHasDocsize ){

Changes to ext/fts3/unicode/mkunicode.tcl.

1
2
3
4
5
6
7
8
9
10
11

12
13
14

15
16

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32
33
34

35
36
37
38

39
40
41
42
43
44
45
46
47
48

49
50
51
52
53
54
55
56
57
58
59
60
61

62
63


64
65
66
67







68
69

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

90

91
92
93
94
95
96
97
98


99
100
101
102
103
104
105
1
2
3
4
5
6
7
8
9
10
11
12
13
14

15
16

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66


67
68
69



70
71
72
73
74
75
76
77

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107

108
109
110
111
112
113
114
115
116











+


-
+

-
+















+



+




+









-
+













+
-
-
+
+

-
-
-
+
+
+
+
+
+
+

-
+




















+
-
+







-
+
+








source [file join [file dirname [info script]] parseunicode.tcl]

proc print_rd {map} {
  global tl_lookup_table
  set aChar [list]
  set lRange [list]

  set nRange 1
  set iFirst  [lindex $map 0 0]
  set cPrev   [lindex $map 0 1]
  set fPrev   [lindex $map 0 2]

  foreach m [lrange $map 1 end] {
    foreach {i c} $m {}
    foreach {i c f} $m {}

    if {$cPrev == $c} {
    if {$cPrev == $c && $fPrev==$f} {
      for {set j [expr $iFirst+$nRange]} {$j<$i} {incr j} {
        if {[info exists tl_lookup_table($j)]==0} break
      }

      if {$j==$i} {
        set nNew [expr {(1 + $i - $iFirst)}]
        if {$nNew<=8} {
          set nRange $nNew
          continue
        }
      }
    }

    lappend lRange [list $iFirst $nRange]
    lappend aChar  $cPrev
    lappend aFlag  $fPrev

    set iFirst $i
    set cPrev  $c
    set fPrev  $f
    set nRange 1
  }
  lappend lRange [list $iFirst $nRange]
  lappend aChar $cPrev
  lappend aFlag $fPrev

  puts "/*"
  puts "** If the argument is a codepoint corresponding to a lowercase letter"
  puts "** in the ASCII range with a diacritic added, return the codepoint"
  puts "** of the ASCII letter only. For example, if passed 235 - \"LATIN"
  puts "** SMALL LETTER E WITH DIAERESIS\" - return 65 (\"LATIN SMALL LETTER"
  puts "** E\"). The resuls of passing a codepoint that corresponds to an"
  puts "** uppercase letter are undefined."
  puts "*/"
  puts "static int ${::remove_diacritic}(int c)\{"
  puts "static int ${::remove_diacritic}(int c, int bComplex)\{"
  puts "  unsigned short aDia\[\] = \{"
  puts -nonewline "        0, "
  set i 1
  foreach r $lRange {
    foreach {iCode nRange} $r {}
    if {($i % 8)==0} {puts "" ; puts -nonewline "    " }
    incr i

    puts -nonewline [format "%5d" [expr ($iCode<<3) + $nRange-1]]
    puts -nonewline ", "
  }
  puts ""
  puts "  \};"
  puts "#define HIBIT ((unsigned char)0x80)"
  puts "  char aChar\[\] = \{"
  puts -nonewline "    '\\0', "
  puts "  unsigned char aChar\[\] = \{"
  puts -nonewline "    '\\0',      "
  set i 1
  foreach c $aChar {
    set str "'$c',  "
    if {$c == ""} { set str "'\\0', " }
  foreach c $aChar f $aFlag {
    if { $f } {
      set str "'$c'|HIBIT, "
    } else {
      set str "'$c',       "
    }
    if {$c == ""} { set str "'\\0',      " }

    if {($i % 12)==0} {puts "" ; puts -nonewline "    " }
    if {($i % 6)==0} {puts "" ; puts -nonewline "    " }
    incr i
    puts -nonewline "$str"
  }
  puts ""
  puts "  \};"
  puts {
  unsigned int key = (((unsigned int)c)<<3) | 0x00000007;
  int iRes = 0;
  int iHi = sizeof(aDia)/sizeof(aDia[0]) - 1;
  int iLo = 0;
  while( iHi>=iLo ){
    int iTest = (iHi + iLo) / 2;
    if( key >= aDia[iTest] ){
      iRes = iTest;
      iLo = iTest+1;
    }else{
      iHi = iTest-1;
    }
  }
  assert( key>=aDia[iRes] );
  if( bComplex==0 && (aChar[iRes] & 0x80) ) return c;
  return ((c > (aDia[iRes]>>3) + (aDia[iRes]&0x07)) ? c : (int)aChar[iRes]);}
  return (c > (aDia[iRes]>>3) + (aDia[iRes]&0x07)) ? c : ((int)aChar[iRes] & 0x7F);}
  puts "\}"
}

proc print_isdiacritic {zFunc map} {

  set lCode [list]
  foreach m $map {
    foreach {code char} $m {}
    foreach {code char flag} $m {}
    if {$flag} continue
    if {$code && $char == ""} { lappend lCode $code }
  }
  set lCode [lsort -integer $lCode]
  set iFirst [lindex $lCode 0]
  set iLast [lindex $lCode end]

  set i1 0
120
121
122
123
124
125
126
127
128


129
130
131
132
133
134
135
131
132
133
134
135
136
137


138
139
140
141
142
143
144
145
146







-
-
+
+







  puts "*/"
  puts "int ${zFunc}\(int c)\{"
  puts "  unsigned int mask0 = [format "0x%08X" $i1];"
  puts "  unsigned int mask1 = [format "0x%08X" $i2];"

  puts "  if( c<$iFirst || c>$iLast ) return 0;"
  puts "  return (c < $iFirst+32) ?"
  puts "      (mask0 & (1 << (c-$iFirst))) :"
  puts "      (mask1 & (1 << (c-$iFirst-32)));"
  puts "      (mask0 & ((unsigned int)1 << (c-$iFirst))) :"
  puts "      (mask1 & ((unsigned int)1 << (c-$iFirst-32)));"
  puts "\}"
}


#-------------------------------------------------------------------------

proc an_load_separator_ranges {} {
468
469
470
471
472
473
474
475

476
477
478
479
480
481
482
479
480
481
482
483
484
485

486
487
488
489
490
491
492
493







-
+







  puts "** is an upper case character that has a lower case equivalent,"
  puts "** return the codepoint corresponding to the lower case version."
  puts "** Otherwise, return a copy of the argument."
  puts "**"
  puts "** The results are undefined if the value passed to this function"
  puts "** is less than zero."
  puts "*/"
  puts "int ${zFunc}\(int c, int bRemoveDiacritic)\{"
  puts "int ${zFunc}\(int c, int eRemoveDiacritic)\{"

  set liOff [tl_generate_ioff_table $lRecord]
  tl_print_table_header
  foreach entry $lRecord { 
    if {[tl_print_table_entry toggle $entry $liOff]} { 
      lappend lHigh $entry 
    } 
512
513
514
515
516
517
518

519


520
521
522
523
524
525
526
527
528
529
530





























































































































































































































































531
532
533
534
535
536
537
523
524
525
526
527
528
529
530

531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803







+
-
+
+











+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+







    assert( iRes>=0 && c>=aEntry[iRes].iCode );
    p = &aEntry[iRes];
    if( c<(p->iCode + p->nRange) && 0==(0x01 & p->flags & (p->iCode ^ c)) ){
      ret = (c + (aiOff[p->flags>>1])) & 0x0000FFFF;
      assert( ret>0 );
    }

    if( eRemoveDiacritic ){
    if( bRemoveDiacritic ) ret = ${::remove_diacritic}(ret);
      ret = ${::remove_diacritic}(ret, eRemoveDiacritic==2);
    }
  }
  }]

  foreach entry $lHigh {
    tl_print_if_entry $entry
  }

  puts ""
  puts "  return ret;"
  puts "\}"
}

proc code {txt} {
  set txt [string trimright $txt]
  set txt [string trimleft $txt "\n"]
  set n [expr {[string length $txt] - [string length [string trim $txt]]}]
  set ret ""
  foreach L [split $txt "\n"] {
    append ret "[string range $L $n end]\n"
  }
  return [uplevel "subst -nocommands {$ret}"]
}

proc intarray {lInt} {
  set ret ""
  set n [llength $lInt]
  for {set i 0} {$i < $n} {incr i 10} {
    append ret "\n    "
    foreach int [lrange $lInt $i [expr $i+9]] {
      append ret [format "%-7s" "$int, "]
    }
  }
  append ret "\n  "
  set ret
}

proc categories_switch {Cvar first lSecond} {
  upvar $Cvar C
  set ret ""
  append ret "case '$first':\n"
  append ret "          switch( zCat\[1\] ){\n"
  foreach s $lSecond {
    append ret "            case '$s': aArray\[$C($first$s)\] = 1; break;\n"
  }
  append ret "            case '*': \n"
  foreach s $lSecond {
    append ret "              aArray\[$C($first$s)\] = 1;\n"
  }
  append ret "              break;\n"
  append ret "            default: return 1;"
  append ret "          }\n"
  append ret "          break;\n"
}

# Argument is a list. Each element of which is itself a list of two elements:
#
#   * the codepoint
#   * the category
#
# List elements are sorted in order of codepoint.
#
proc print_categories {lMap} {
  set categories {
    Cc Cf Cn Cs
    Ll Lm Lo Lt Lu
    Mc Me Mn
    Nd Nl No
    Pc Pd Pe Pf Pi Po Ps
    Sc Sk Sm So
    Zl Zp Zs

    LC Co
  }

  for {set i 0} {$i < [llength $categories]} {incr i} {
    set C([lindex $categories $i]) [expr 1+$i]
  }

  set caseC [categories_switch C C {c f n s o}]
  set caseL [categories_switch C L {l m o t u C}]
  set caseM [categories_switch C M {c e n}]
  set caseN [categories_switch C N {d l o}]
  set caseP [categories_switch C P {c d e f i o s}]
  set caseS [categories_switch C S {c k m o}]
  set caseZ [categories_switch C Z {l p s}]

  set nCat [expr [llength [array names C]] + 1]
  puts [code {
    int sqlite3Fts5UnicodeCatParse(const char *zCat, u8 *aArray){ 
      aArray[0] = 1;
      switch( zCat[0] ){
        $caseC
        $caseL
        $caseM
        $caseN
        $caseP
        $caseS
        $caseZ
      }
      return 0;
    }
  }]

  set nRepeat 0
  set first   [lindex $lMap 0 0]
  set class   [lindex $lMap 0 1]
  set prev -1

  set CASE(0) "Lu"
  set CASE(1) "Ll"

  foreach m $lMap {
    foreach {codepoint cl} $m {}
    set codepoint [expr "0x$codepoint"]
    if {$codepoint>=(1<<20)} continue

    set bNew 0
    if {$codepoint!=($prev+1)} {
      set bNew 1
    } elseif {
      $cl==$class || ($class=="LC" && $cl==$CASE([expr $nRepeat & 0x01]))
    } {
      incr nRepeat
    } elseif {$class=="Lu" && $nRepeat==1 && $cl=="Ll"} {
      set class LC
      incr nRepeat
    } else {
      set bNew 1
    }
    if {$bNew} {
      lappend lEntries [list $first $class $nRepeat]
      set nRepeat 1
      set first $codepoint
      set class $cl
    }
    set prev $codepoint
  }
  if {$nRepeat>0} {
    lappend lEntries [list $first $class $nRepeat]
  }

  set aBlock [list 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
  set aMap [list]
  foreach e $lEntries {
    foreach {cp class nRepeat} $e {}
    set block [expr ($cp>>16)]
    if {$block>0 && [lindex $aBlock $block]==0} {
      for {set i 1} {$i<=$block} {incr i} {
        if {[lindex $aBlock $i]==0} {
          lset aBlock $i [llength $aMap]
        }
      }
    }
    lappend aMap [expr {$cp & 0xFFFF}]
    lappend aData [expr {($nRepeat << 5) + $C($class)}]
  }
  for {set i 1} {$i<[llength $aBlock]} {incr i} {
    if {[lindex $aBlock $i]==0} {
      lset aBlock $i [llength $aMap]
    }
  }

  set aBlockArray [intarray $aBlock]
  set aMapArray [intarray $aMap]
  set aDataArray [intarray $aData]
  puts [code {
    static u16 aFts5UnicodeBlock[] = {$aBlockArray};
    static u16 aFts5UnicodeMap[] = {$aMapArray};
    static u16 aFts5UnicodeData[] = {$aDataArray};

    int sqlite3Fts5UnicodeCategory(u32 iCode) { 
      int iRes = -1;
      int iHi;
      int iLo;
      int ret;
      u16 iKey;

      if( iCode>=(1<<20) ){
        return 0;
      }
      iLo = aFts5UnicodeBlock[(iCode>>16)];
      iHi = aFts5UnicodeBlock[1+(iCode>>16)];
      iKey = (iCode & 0xFFFF);
      while( iHi>iLo ){
        int iTest = (iHi + iLo) / 2;
        assert( iTest>=iLo && iTest<iHi );
        if( iKey>=aFts5UnicodeMap[iTest] ){
          iRes = iTest;
          iLo = iTest+1;
        }else{
          iHi = iTest;
        }
      }

      if( iRes<0 ) return 0;
      if( iKey>=(aFts5UnicodeMap[iRes]+(aFts5UnicodeData[iRes]>>5)) ) return 0;
      ret = aFts5UnicodeData[iRes] & 0x1F;
      if( ret!=$C(LC) ) return ret;
      return ((iKey - aFts5UnicodeMap[iRes]) & 0x01) ? $C(Ll) : $C(Lu);
    }

    void sqlite3Fts5UnicodeAscii(u8 *aArray, u8 *aAscii){
      int i = 0;
      int iTbl = 0;
      while( i<128 ){
        int bToken = aArray[ aFts5UnicodeData[iTbl] & 0x1F ];
        int n = (aFts5UnicodeData[iTbl] >> 5) + i;
        for(; i<128 && i<n; i++){
          aAscii[i] = (u8)bToken;
        }
        iTbl++;
      }
    }
  }]
}

proc print_test_categories {lMap} {

  set lCP [list]
  foreach e $lMap {
    foreach {cp cat} $e {}
    if {[expr 0x$cp] < (1<<20)} {
      lappend lCP "{0x$cp, \"$cat\"}, "
    }
  }

  set aCP "\n"
  for {set i 0} {$i < [llength $lCP]} {incr i 4} {
    append aCP "    [join [lrange $lCP $i $i+3]]\n"
  }


  puts [code {
    static int categories_test (int *piCode){
      struct Codepoint {
        int iCode;
        const char *zCat;
      } aCP[] = {$aCP};
      int i;
      int iCP = 0;

      for(i=0; i<1000000; i++){
        u8 aArray[40];
        int cat = 0;
        int c = 0;
        memset(aArray, 0, sizeof(aArray));
        if( aCP[iCP].iCode==i ){
          sqlite3Fts5UnicodeCatParse(aCP[iCP].zCat, aArray);
          iCP++;
        }else{
          aArray[0] = 1;
        }

        c = sqlite3Fts5UnicodeCategory((u32)i);
        if( aArray[c]==0 ){
          *piCode = i;
          return 1;
        }
      }

      return 0;
    }
  }]
}

proc print_fold_test {zFunc mappings} {
  global tl_lookup_table

  foreach m $mappings {
    set c [lindex $m 1]
    if {$c == ""} {
568
569
570
571
572
573
574
575

576
577
578
579
580
581
582
834
835
836
837
838
839
840

841
842
843
844
845
846
847
848







-
+







  puts "\}"
}


proc print_fileheader {} {
  puts [string trim {
/*
** 2012 May 25
** 2012-05-25
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
601
602
603
604
605
606
607
608

609

610
611
612
613
614
615





616

617
618
619
620
621
622
623
867
868
869
870
871
872
873

874
875
876
877
878
879
880
881
882
883
884
885
886
887

888
889
890
891
892
893
894
895







-
+

+






+
+
+
+
+
-
+







}

proc print_test_main {} {
  puts ""
  puts "#include <stdio.h>"
  puts ""
  puts "int main(int argc, char **argv)\{"
  puts "  int r1, r2;"
  puts "  int r1, r2, r3;"
  puts "  int code;"
  puts "  r3 = 0;"
  puts "  r1 = isalnum_test(&code);"
  puts "  if( r1 ) printf(\"isalnum(): Problem with code %d\\n\",code);"
  puts "  else printf(\"isalnum(): test passed\\n\");"
  puts "  r2 = fold_test(&code);"
  puts "  if( r2 ) printf(\"fold(): Problem with code %d\\n\",code);"
  puts "  else printf(\"fold(): test passed\\n\");"
  if {$::generate_fts5_code} {
    puts "  r3 = categories_test(&code);"
    puts "  if( r3 ) printf(\"categories(): Problem with code %d\\n\",code);"
    puts "  else printf(\"categories(): test passed\\n\");"
  }
  puts "  return (r1 || r2);"
  puts "  return (r1 || r2 || r3);"
  puts "\}"
}

# Proces the command line arguments. Exit early if they are not to
# our liking.
#
proc usage {} {
646
647
648
649
650
651
652






653
654
655
656

657


658
659
660
661
662
663
664
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935

936
937
938
939
940
941
942
943
944







+
+
+
+
+
+




+
-
+
+







    default {
      usage
    }
  }
}

print_fileheader

if {$::generate_test_code} {
  puts "typedef unsigned short int u16;"
  puts "typedef unsigned char u8;"
  puts "#include <string.h>"
}

# Print the isalnum() function to stdout.
#
set lRange [an_load_separator_ranges]
if {$generate_fts5_code==0} {
print_isalnum ${function_prefix}UnicodeIsalnum $lRange
  print_isalnum ${function_prefix}UnicodeIsalnum $lRange
}

# Leave a gap between the two generated C functions.
#
puts ""
puts ""

# Load the fold data. This is used by the [rd_XXX] commands
672
673
674
675
676
677
678






679
680
681
682
683

684


685

686
687
688
689
690
691
692
693
694
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970

971
972
973
974
975
976
977
978
979
980
981
982
983







+
+
+
+
+
+





+
-
+
+

+









print_isdiacritic ${function_prefix}UnicodeIsdiacritic $mappings
puts ""
puts ""

# Print the fold() function to stdout.
#
print_fold ${function_prefix}UnicodeFold

if {$generate_fts5_code} {
  puts ""
  puts ""
  print_categories [cc_load_unicodedata_text ${unicodedata.txt}]
}

# Print the test routines and main() function to stdout, if -test 
# was specified.
#
if {$::generate_test_code} {
  if {$generate_fts5_code==0} {
  print_test_isalnum ${function_prefix}UnicodeIsalnum $lRange
    print_test_isalnum ${function_prefix}UnicodeIsalnum $lRange
  }
  print_fold_test ${function_prefix}UnicodeFold $mappings
  print_test_categories [cc_load_unicodedata_text ${unicodedata.txt}]
  print_test_main 
}

if {$generate_fts5_code} {
  # no-op
} else {
  puts "#endif /* defined(SQLITE_ENABLE_FTS3) || defined(SQLITE_ENABLE_FTS4) */"
  puts "#endif /* !defined(SQLITE_DISABLE_FTS3_UNICODE) */"
}

Changes to ext/fts3/unicode/parseunicode.tcl.

1
2
3
4
5
6
7
8
9
10
11


12
13
14












15
16
17
18
19
20
21
1
2
3
4
5
6
7
8
9


10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33









-
-
+
+



+
+
+
+
+
+
+
+
+
+
+
+








#--------------------------------------------------------------------------
# Parameter $zName must be a path to the file UnicodeData.txt. This command
# reads the file and returns a list of mappings required to remove all
# diacritical marks from a unicode string. Each mapping is itself a list
# consisting of two elements - the unicode codepoint and the single ASCII
# character that it should be replaced with, or an empty string if the 
# codepoint should simply be removed from the input. Examples:
#
#   { 224 a  }     (replace codepoint 224 to "a")
#   { 769 "" }     (remove codepoint 769 from input)
#   { 224 a  0 }     (replace codepoint 224 to "a")
#   { 769 "" 0 }     (remove codepoint 769 from input)
#
# Mappings are only returned for non-upper case codepoints. It is assumed
# that the input has already been folded to lower case.
#
# The third value in the list is always either 0 or 1. 0 if the 
# UnicodeData.txt file maps the codepoint to a single ASCII character and
# a diacritic, or 1 if the mapping is indirect. For example, consider the 
# two entries:
#
# 1ECD;LATIN SMALL LETTER O WITH DOT BELOW;Ll;0;L;006F 0323;;;;N;;;1ECC;;1ECC
# 1ED9;LATIN SMALL LETTER O WITH CIRCUMFLEX AND DOT BELOW;Ll;0;L;1ECD 0302;;;;N;;;1ED8;;1ED8
#
# The first codepoint is a direct mapping (as 006F is ASCII and 0323 is a 
# diacritic). The second is an indirect mapping, as it maps to the
# first codepoint plus 0302 (a diacritic).
#
proc rd_load_unicodedata_text {zName} {
  global tl_lookup_table

  set fd [open $zName]
  set lField {
    code
49
50
51
52
53
54
55


56








57
58
59
60
61


62
63
64
65
66
67

68
69
70
71
72
73
74
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

83
84
85
86
87
88
89

90
91
92
93
94
95
96
97







+
+

+
+
+
+
+
+
+
+




-
+
+





-
+







      continue
    }

    set iCode  [expr "0x$code"]
    set iAscii [expr "0x[lindex $character_decomposition_mapping 0]"]
    set iDia   [expr "0x[lindex $character_decomposition_mapping 1]"]

    # Filter out upper-case characters, as they will be mapped to their
    # lower-case equivalents before this data is used.
    if {[info exists tl_lookup_table($iCode)]} continue

    # Check if this is an indirect mapping. If so, set bIndirect to true
    # and change $iAscii to the indirectly mappped ASCII character.
    set bIndirect 0
    if {[info exists dia($iDia)] && [info exists mapping($iAscii)]} {
      set iAscii $mapping($iAscii)
      set bIndirect 1
    }

    if { ($iAscii >= 97 && $iAscii <= 122)
      || ($iAscii >= 65 && $iAscii <= 90)
    } {
      lappend lRet [list $iCode [string tolower [format %c $iAscii]]]
      lappend lRet [list $iCode [string tolower [format %c $iAscii]] $bIndirect]
      set mapping($iCode) $iAscii
      set dia($iDia) 1
    }
  }

  foreach d [array names dia] {
    lappend lRet [list $d ""]
    lappend lRet [list $d "" 0]
  }
  set lRet [lsort -integer -index 0 $lRet]

  close $fd
  set lRet
}

138
139
140
141
142
143
144
145


















146



















161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205








+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
    foreach elem $c { lappend c2 [expr "0x[string trim $elem]"] }
    set b [string trim $b]
    set d [string trim $d]

    if {$b=="C" || $b=="S"} { set tl_lookup_table($a2) $c2 }
  }
}

proc cc_load_unicodedata_text {zName} {
  set fd [open $zName]
  set lField {
    code
    character_name
    general_category
    canonical_combining_classes
    bidirectional_category
    character_decomposition_mapping
    decimal_digit_value
    digit_value
    numeric_value
    mirrored
    unicode_1_name
    iso10646_comment_field
    uppercase_mapping
    lowercase_mapping
    titlecase_mapping

  }
  set lRet [list]

  while { ![eof $fd] } {
    set line [gets $fd]
    if {$line == ""} continue

    set fields [split $line ";"]
    if {[llength $fields] != [llength $lField]} { error "parse error: $line" }
    foreach $lField $fields {}

    lappend lRet [list $code $general_category]
  }

  close $fd
  set lRet
}


Changes to ext/fts5/fts5_hash.c.

441
442
443
444
445
446
447

448


449
450
451
452
453
454
455
441
442
443
444
445
446
447
448

449
450
451
452
453
454
455
456
457







+
-
+
+







  ap = sqlite3_malloc(sizeof(Fts5HashEntry*) * nMergeSlot);
  if( !ap ) return SQLITE_NOMEM;
  memset(ap, 0, sizeof(Fts5HashEntry*) * nMergeSlot);

  for(iSlot=0; iSlot<pHash->nSlot; iSlot++){
    Fts5HashEntry *pIter;
    for(pIter=pHash->aSlot[iSlot]; pIter; pIter=pIter->pHashNext){
      if( pTerm==0 
      if( pTerm==0 || 0==memcmp(fts5EntryKey(pIter), pTerm, nTerm) ){
       || (pIter->nKey+1>=nTerm && 0==memcmp(fts5EntryKey(pIter), pTerm, nTerm))
      ){
        Fts5HashEntry *pEntry = pIter;
        pEntry->pScanNext = 0;
        for(i=0; ap[i]; i++){
          pEntry = fts5HashEntryMerge(pEntry, ap[i]);
          ap[i] = 0;
        }
        ap[i] = pEntry;

Changes to ext/fts5/test/fts5aa.test.

587
588
589
590
591
592
593
594
595














596
597
587
588
589
590
591
592
593


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609







-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+


  COMMIT;
}

do_execsql_test 22.1 {
  SELECT rowid FROM t9('a*')
} {1}

}


#-------------------------------------------------------------------------
do_execsql_test 25.0 {
  CREATE VIRTUAL TABLE t13 USING fts5(x, detail=%DETAIL%);
}
do_execsql_test 25.1 {
  BEGIN;
  INSERT INTO t13 VALUES('AAAA');
SELECT * FROM t13('BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB*');

  END;
}

}

finish_test

Added ext/rbu/rbucollate.test.
































































1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
# 2018 March 22
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#

source [file join [file dirname [info script]] rbu_common.tcl]
set ::testprefix rbucollate

ifcapable !icu_collations {
  finish_test
  return
}

db close
sqlite3_shutdown
sqlite3_config_uri 1
reset_db
 
# Create a simple RBU database. That expects to write to a table:
#
#   CREATE TABLE t1(a PRIMARY KEY, b, c);
#
proc create_rbu1 {filename} {
  forcedelete $filename
  sqlite3 rbu1 $filename  
  rbu1 eval {
    CREATE TABLE data_t1(a, b, c, rbu_control);
    INSERT INTO data_t1 VALUES('a', 'one', 1, 0);
    INSERT INTO data_t1 VALUES('b', 'two', 2, 0);
    INSERT INTO data_t1 VALUES('c', 'three', 3, 0);
  }
  rbu1 close
  return $filename
}

do_execsql_test 1.0 {
  SELECT icu_load_collation('en_US', 'my-collate');
  CREATE TABLE t1(a COLLATE "my-collate" PRIMARY KEY, b, c);
} {{}}

do_test 1.2 {
  create_rbu1 testrbu.db
  sqlite3rbu rbu test.db testrbu.db
  rbu dbMain_eval { SELECT icu_load_collation('en_US', 'my-collate') }
  rbu dbRbu_eval { SELECT icu_load_collation('en_US', 'my-collate') }
  while 1 {
    set rc [rbu step]
    if {$rc!="SQLITE_OK"} break
  }
  rbu close
  db eval { SELECT * FROM t1 }
} {a one 1 b two 2 c three 3}

#forcedelete testrbu.db
finish_test

Changes to ext/rbu/sqlite3rbu.c.

395
396
397
398
399
400
401
402


403
404
405
406
407
408
409
395
396
397
398
399
400
401

402
403
404
405
406
407
408
409
410







-
+
+







** space used by the RBU handle.
*/
struct rbu_vfs {
  sqlite3_vfs base;               /* rbu VFS shim methods */
  sqlite3_vfs *pRealVfs;          /* Underlying VFS */
  sqlite3_mutex *mutex;           /* Mutex to protect pMain */
  sqlite3rbu *pRbu;               /* Owner RBU object */
  rbu_file *pMain;                /* Linked list of main db files */
  rbu_file *pMain;                /* List of main db files */
  rbu_file *pMainRbu;             /* List of main db files with pRbu!=0 */
};

/*
** Each file opened by an rbu VFS is represented by an instance of
** the following structure.
**
** If this is a temporary file (pRbu!=0 && flags&DELETE_ON_CLOSE), variable
424
425
426
427
428
429
430

431
432
433
434
435
436
437
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439







+







  int nShm;                       /* Number of entries in apShm[] array */
  char **apShm;                   /* Array of mmap'd *-shm regions */
  char *zDel;                     /* Delete this when closing file */

  const char *zWal;               /* Wal filename for this main db file */
  rbu_file *pWalFd;               /* Wal file descriptor for this main db */
  rbu_file *pMainNext;            /* Next MAIN_DB file */
  rbu_file *pMainRbuNext;         /* Next MAIN_DB file with pRbu!=0 */
};

/*
** True for an RBU vacuum handle, or false otherwise.
*/
#define rbuIsVacuum(p) ((p)->zTarget==0)

1802
1803
1804
1805
1806
1807
1808
1809

1810
1811
1812
1813
1814
1815
1816
1804
1805
1806
1807
1808
1809
1810

1811
1812
1813
1814
1815
1816
1817
1818







-
+








    while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pXInfo) ){
      int bKey = sqlite3_column_int(pXInfo, 5);
      if( bKey ){
        int iCid = sqlite3_column_int(pXInfo, 1);
        int bDesc = sqlite3_column_int(pXInfo, 3);
        const char *zCollate = (const char*)sqlite3_column_text(pXInfo, 4);
        zCols = rbuMPrintf(p, "%z%sc%d %s COLLATE %s", zCols, zComma, 
        zCols = rbuMPrintf(p, "%z%sc%d %s COLLATE %Q", zCols, zComma, 
            iCid, pIter->azTblType[iCid], zCollate
        );
        zPk = rbuMPrintf(p, "%z%sc%d%s", zPk, zComma, iCid, bDesc?" DESC":"");
        zComma = ", ";
      }
    }
    zCols = rbuMPrintf(p, "%z, id INTEGER", zCols);
1863
1864
1865
1866
1867
1868
1869
1870

1871
1872
1873
1874
1875
1876
1877
1865
1866
1867
1868
1869
1870
1871

1872
1873
1874
1875
1876
1877
1878
1879







-
+







      );

      if( pIter->eType==RBU_PK_IPK && pIter->abTblPk[iCol] ){
        /* If the target table column is an "INTEGER PRIMARY KEY", add
        ** "PRIMARY KEY" to the imposter table column declaration. */
        zPk = "PRIMARY KEY ";
      }
      zSql = rbuMPrintf(p, "%z%s\"%w\" %s %sCOLLATE %s%s", 
      zSql = rbuMPrintf(p, "%z%s\"%w\" %s %sCOLLATE %Q%s", 
          zSql, zComma, zCol, pIter->azTblType[iCol], zPk, zColl,
          (pIter->abNotNull[iCol] ? " NOT NULL" : "")
      );
      zComma = ", ";
    }

    if( pIter->eType==RBU_PK_WITHOUT_ROWID ){
4011
4012
4013
4014
4015
4016
4017































































4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039

4040
4041
4042
4043
4044
4045
4046

4047
4048
4049
4050
4051
4052
4053
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100




4101

4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115







+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+


















-
-
-
-
+
-






+







  i64 nDiff = nNew - pFd->sz;
  pRbu->szTemp += nDiff;
  pFd->sz = nNew;
  assert( pRbu->szTemp>=0 );
  if( pRbu->szTempLimit && pRbu->szTemp>pRbu->szTempLimit ) return SQLITE_FULL;
  return SQLITE_OK;
}

/*
** Add an item to the main-db lists, if it is not already present.
**
** There are two main-db lists. One for all file descriptors, and one
** for all file descriptors with rbu_file.pDb!=0. If the argument has
** rbu_file.pDb!=0, then it is assumed to already be present on the
** main list and is only added to the pDb!=0 list.
*/
static void rbuMainlistAdd(rbu_file *p){
  rbu_vfs *pRbuVfs = p->pRbuVfs;
  rbu_file *pIter;
  assert( (p->openFlags & SQLITE_OPEN_MAIN_DB) );
  sqlite3_mutex_enter(pRbuVfs->mutex);
  if( p->pRbu==0 ){
    for(pIter=pRbuVfs->pMain; pIter; pIter=pIter->pMainNext);
    p->pMainNext = pRbuVfs->pMain;
    pRbuVfs->pMain = p;
  }else{
    for(pIter=pRbuVfs->pMainRbu; pIter && pIter!=p; pIter=pIter->pMainRbuNext){}
    if( pIter==0 ){
      p->pMainRbuNext = pRbuVfs->pMainRbu;
      pRbuVfs->pMainRbu = p;
    }
  }
  sqlite3_mutex_leave(pRbuVfs->mutex);
}

/*
** Remove an item from the main-db lists.
*/
static void rbuMainlistRemove(rbu_file *p){
  rbu_file **pp;
  sqlite3_mutex_enter(p->pRbuVfs->mutex);
  for(pp=&p->pRbuVfs->pMain; *pp && *pp!=p; pp=&((*pp)->pMainNext)){}
  if( *pp ) *pp = p->pMainNext;
  p->pMainNext = 0;
  for(pp=&p->pRbuVfs->pMainRbu; *pp && *pp!=p; pp=&((*pp)->pMainRbuNext)){}
  if( *pp ) *pp = p->pMainRbuNext;
  p->pMainRbuNext = 0;
  sqlite3_mutex_leave(p->pRbuVfs->mutex);
}

/*
** Given that zWal points to a buffer containing a wal file name passed to 
** either the xOpen() or xAccess() VFS method, search the main-db list for
** a file-handle opened by the same database connection on the corresponding
** database file.
**
** If parameter bRbu is true, only search for file-descriptors with
** rbu_file.pDb!=0.
*/
static rbu_file *rbuFindMaindb(rbu_vfs *pRbuVfs, const char *zWal, int bRbu){
  rbu_file *pDb;
  sqlite3_mutex_enter(pRbuVfs->mutex);
  if( bRbu ){
    for(pDb=pRbuVfs->pMainRbu; pDb && pDb->zWal!=zWal; pDb=pDb->pMainRbuNext){}
  }else{
    for(pDb=pRbuVfs->pMain; pDb && pDb->zWal!=zWal; pDb=pDb->pMainNext){}
  }
  sqlite3_mutex_leave(pRbuVfs->mutex);
  return pDb;
}

/*
** Close an rbu file.
*/
static int rbuVfsClose(sqlite3_file *pFile){
  rbu_file *p = (rbu_file*)pFile;
  int rc;
  int i;

  /* Free the contents of the apShm[] array. And the array itself. */
  for(i=0; i<p->nShm; i++){
    sqlite3_free(p->apShm[i]);
  }
  sqlite3_free(p->apShm);
  p->apShm = 0;
  sqlite3_free(p->zDel);

  if( p->openFlags & SQLITE_OPEN_MAIN_DB ){
    rbu_file **pp;
    sqlite3_mutex_enter(p->pRbuVfs->mutex);
    for(pp=&p->pRbuVfs->pMain; *pp!=p; pp=&((*pp)->pMainNext));
    *pp = p->pMainNext;
    rbuMainlistRemove(p);
    sqlite3_mutex_leave(p->pRbuVfs->mutex);
    rbuUnlockShm(p);
    p->pReal->pMethods->xShmUnmap(p->pReal, 0);
  }
  else if( (p->openFlags & SQLITE_OPEN_DELETEONCLOSE) && p->pRbu ){
    rbuUpdateTempSize(p, 0);
  }
  assert( p->pMainNext==0 && p->pRbuVfs->pMain!=p );

  /* Close the underlying file handle */
  rc = p->pReal->pMethods->xClose(p->pReal);
  return rc;
}


4298
4299
4300
4301
4302
4303
4304



4305
4306
4307
4308
4309
4310
4311
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376







+
+
+







      rc = xControl(p->pReal, SQLITE_FCNTL_ZIPVFS, &dummy);
      if( rc==SQLITE_OK ){
        rc = SQLITE_ERROR;
        pRbu->zErrmsg = sqlite3_mprintf("rbu/zipvfs setup error");
      }else if( rc==SQLITE_NOTFOUND ){
        pRbu->pTargetFd = p;
        p->pRbu = pRbu;
        if( p->openFlags & SQLITE_OPEN_MAIN_DB ){
          rbuMainlistAdd(p);
        }
        if( p->pWalFd ) p->pWalFd->pRbu = pRbu;
        rc = SQLITE_OK;
      }
    }
    return rc;
  }
  else if( op==SQLITE_FCNTL_RBUCNT ){
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4524
4525
4526
4527
4528
4529
4530














4531
4532
4533
4534
4535
4536
4537







-
-
-
-
-
-
-
-
-
-
-
-
-
-







    /* Release the checkpointer and writer locks */
    rbuUnlockShm(p);
    rc = p->pReal->pMethods->xShmUnmap(p->pReal, delFlag);
  }
  return rc;
}

/*
** Given that zWal points to a buffer containing a wal file name passed to 
** either the xOpen() or xAccess() VFS method, return a pointer to the
** file-handle opened by the same database connection on the corresponding
** database file.
*/
static rbu_file *rbuFindMaindb(rbu_vfs *pRbuVfs, const char *zWal){
  rbu_file *pDb;
  sqlite3_mutex_enter(pRbuVfs->mutex);
  for(pDb=pRbuVfs->pMain; pDb && pDb->zWal!=zWal; pDb=pDb->pMainNext){}
  sqlite3_mutex_leave(pRbuVfs->mutex);
  return pDb;
}

/* 
** A main database named zName has just been opened. The following 
** function returns a pointer to a buffer owned by SQLite that contains
** the name of the *-wal file this db connection will use. SQLite
** happens to pass a pointer to this buffer when using xAccess()
** or xOpen() to operate on the *-wal file.  
*/
4551
4552
4553
4554
4555
4556
4557
4558

4559
4560
4561
4562
4563
4564
4565
4602
4603
4604
4605
4606
4607
4608

4609
4610
4611
4612
4613
4614
4615
4616







-
+







      ** (pFd->zWal) to point to a buffer owned by SQLite that contains
      ** the name of the *-wal file this db connection will use. SQLite
      ** happens to pass a pointer to this buffer when using xAccess()
      ** or xOpen() to operate on the *-wal file.  */
      pFd->zWal = rbuMainToWal(zName, flags);
    }
    else if( flags & SQLITE_OPEN_WAL ){
      rbu_file *pDb = rbuFindMaindb(pRbuVfs, zName);
      rbu_file *pDb = rbuFindMaindb(pRbuVfs, zName, 0);
      if( pDb ){
        if( pDb->pRbu && pDb->pRbu->eStage==RBU_STAGE_OAL ){
          /* This call is to open a *-wal file. Intead, open the *-oal. This
          ** code ensures that the string passed to xOpen() is terminated by a
          ** pair of '\0' bytes in case the VFS attempts to extract a URI 
          ** parameter from it.  */
          const char *zBase = zName;
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612

4613
4614
4615
4616
4617
4618
4619
4620
4654
4655
4656
4657
4658
4659
4660



4661

4662
4663
4664
4665
4666
4667
4668







-
-
-
+
-







  }
  if( pFd->pReal->pMethods ){
    /* The xOpen() operation has succeeded. Set the sqlite3_file.pMethods
    ** pointer and, if the file is a main database file, link it into the
    ** mutex protected linked list of all such files.  */
    pFile->pMethods = &rbuvfs_io_methods;
    if( flags & SQLITE_OPEN_MAIN_DB ){
      sqlite3_mutex_enter(pRbuVfs->mutex);
      pFd->pMainNext = pRbuVfs->pMain;
      pRbuVfs->pMain = pFd;
      rbuMainlistAdd(pFd);
      sqlite3_mutex_leave(pRbuVfs->mutex);
    }
  }else{
    sqlite3_free(pFd->zDel);
  }

  return rc;
}
4654
4655
4656
4657
4658
4659
4660
4661

4662
4663
4664
4665
4666
4667
4668
4702
4703
4704
4705
4706
4707
4708

4709
4710
4711
4712
4713
4714
4715
4716







-
+







  **
  **   b) if the *-wal file does not exist, claim that it does anyway,
  **      causing SQLite to call xOpen() to open it. This call will also
  **      be intercepted (see the rbuVfsOpen() function) and the *-oal
  **      file opened instead.
  */
  if( rc==SQLITE_OK && flags==SQLITE_ACCESS_EXISTS ){
    rbu_file *pDb = rbuFindMaindb(pRbuVfs, zPath);
    rbu_file *pDb = rbuFindMaindb(pRbuVfs, zPath, 1);
    if( pDb && pDb->pRbu && pDb->pRbu->eStage==RBU_STAGE_OAL ){
      if( *pResOut ){
        rc = SQLITE_CANTOPEN;
      }else{
        sqlite3_int64 sz = 0;
        rc = rbuVfsFileSize(&pDb->base, &sz);
        *pResOut = (sz>0);

Changes to ext/rbu/test_rbu.c.

77
78
79
80
81
82
83

84
85
86
87
88
89
90
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91







+







    {"bp_progress", 2, ""},          /* 5 */
    {"db", 3, "RBU"},                /* 6 */
    {"state", 2, ""},                /* 7 */
    {"progress", 2, ""},             /* 8 */
    {"close_no_error", 2, ""},       /* 9 */
    {"temp_size_limit", 3, "LIMIT"}, /* 10 */
    {"temp_size", 2, ""},            /* 11 */
    {"dbRbu_eval", 3, "SQL"},        /* 12 */
    {0,0,0}
  };
  int iCmd;

  if( objc<2 ){
    Tcl_WrongNumArgs(interp, 1, objv, "METHOD");
    return TCL_ERROR;
142
143
144
145
146
147
148

149
150


151
152
153
154
155
156
157
143
144
145
146
147
148
149
150


151
152
153
154
155
156
157
158
159







+
-
-
+
+







    case 3: /* savestate */ {
      int rc = sqlite3rbu_savestate(pRbu);
      Tcl_SetObjResult(interp, Tcl_NewStringObj(sqlite3ErrName(rc), -1));
      ret = (rc==SQLITE_OK ? TCL_OK : TCL_ERROR);
      break;
    }

    case 12: /* dbRbu_eval */ 
    case 4: /* dbMain_eval */ {
      sqlite3 *db = sqlite3rbu_db(pRbu, 0);
    case 4:  /* dbMain_eval */ {
      sqlite3 *db = sqlite3rbu_db(pRbu, (iCmd==12));
      int rc = sqlite3_exec(db, Tcl_GetString(objv[2]), 0, 0, 0);
      if( rc!=SQLITE_OK ){
        Tcl_SetObjResult(interp, Tcl_NewStringObj(sqlite3_errmsg(db), -1));
        ret = TCL_ERROR;
      }
      break;
    }

Changes to ext/rtree/rtree.c.

3522
3523
3524
3525
3526
3527
3528

3529
3530
3531
3532
3533
3534
3535
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536







+







    assert( pRtree->nBusy==1 );
    rtreeRelease(pRtree);
  }
  return rc;
}


#if defined(SQLITE_TEST)
/*
** Implementation of a scalar function that decodes r-tree nodes to
** human readable strings. This can be used for debugging and analysis.
**
** The scalar function takes two arguments: (1) the number of dimensions
** to the rtree (between 1 and 5, inclusive) and (2) a blob of data containing
** an r-tree node.  For a two-dimensional r-tree structure called "rt", to
3583
3584
3585
3586
3587
3588
3589

3590
3591
3592
3593
3594
3595
3596
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598







+







    }else{
      zText = sqlite3_mprintf("{%s}", zCell);
    }
  }
  
  sqlite3_result_text(ctx, zText, -1, sqlite3_free);
}
#endif

/* This routine implements an SQL function that returns the "depth" parameter
** from the front of a blob that is an r-tree node.  For example:
**
**     SELECT rtreedepth(data) FROM rt_node WHERE nodeno=1;
**
** The depth value is 0 for all nodes other than the root node, and the root
4069
4070
4071
4072
4073
4074
4075
4076

4077

4078

4079
4080
4081
4082
4083
4084
4085
4071
4072
4073
4074
4075
4076
4077

4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089







-
+

+

+







/*
** Register the r-tree module with database handle db. This creates the
** virtual table module "rtree" and the debugging/analysis scalar 
** function "rtreenode".
*/
int sqlite3RtreeInit(sqlite3 *db){
  const int utf8 = SQLITE_UTF8;
  int rc;
  int rc = SQLITE_OK;

#if defined(SQLITE_TEST)
  rc = sqlite3_create_function(db, "rtreenode", 2, utf8, 0, rtreenode, 0, 0);
#endif
  if( rc==SQLITE_OK ){
    rc = sqlite3_create_function(db, "rtreedepth", 1, utf8, 0,rtreedepth, 0, 0);
  }
  if( rc==SQLITE_OK ){
    rc = sqlite3_create_function(db, "rtreecheck", -1, utf8, 0,rtreecheck, 0,0);
  }
  if( rc==SQLITE_OK ){

Changes to src/sqlite.h.in.

3562
3563
3564
3565
3566
3567
3568

3569
3570
3571
3572
3573
3574
3575
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576







+







** [sqlite3_finalize()] relatively soon. The current implementation acts
** on this hint by avoiding the use of [lookaside memory] so as not to
** deplete the limited store of lookaside memory. Future versions of
** SQLite may act on this hint differently.
** </dl>
*/
#define SQLITE_PREPARE_PERSISTENT              0x01
#define SQLITE_PREPARE_NO_VTAB                 0x04

/*
** CAPI3REF: Compiling An SQL Statement
** KEYWORDS: {SQL statement compiler}
** METHOD: sqlite3
** CONSTRUCTOR: sqlite3_stmt
**
4746
4747
4748
4749
4750
4751
4752
4753


4754
4755
4756
4757
4758
4759
4760
4747
4748
4749
4750
4751
4752
4753

4754
4755
4756
4757
4758
4759
4760
4761
4762







-
+
+







** CAPI3REF: Function Flags
**
** These constants may be ORed together with the 
** [SQLITE_UTF8 | preferred text encoding] as the fourth argument
** to [sqlite3_create_function()], [sqlite3_create_function16()], or
** [sqlite3_create_function_v2()].
*/
#define SQLITE_DETERMINISTIC    0x800
#define SQLITE_DETERMINISTIC    0x000000800
#define SQLITE_DIRECTONLY       0x000080000

/*
** CAPI3REF: Deprecated Functions
** DEPRECATED
**
** These functions are [deprecated].  In order to maintain
** backwards compatibility with older code, these functions continue 

Added test/fts3corrupt4.test.




















































































































































1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
# 2006 September 9
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#*************************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this script is testing the FTS3 module.
#
# $Id: fts3aa.test,v 1.1 2007/08/20 17:38:42 shess Exp $
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set testprefix fts3corrupt4

# If SQLITE_ENABLE_FTS3 is defined, omit this file.
ifcapable !fts3 {
  finish_test
  return
}

do_execsql_test 1.0 {
  BEGIN;
    CREATE VIRTUAL TABLE ft USING fts3;
    INSERT INTO ft VALUES('aback');
    INSERT INTO ft VALUES('abaft');
    INSERT INTO ft VALUES('abandon');
  COMMIT;
}

proc blob {a} { binary decode hex $a }
db func blob blob

do_execsql_test 1.1 {
  SELECT quote(root) FROM ft_segdir;
} {X'0005616261636B03010200030266740302020003046E646F6E03030200'}

do_execsql_test 1.2 {
  UPDATE ft_segdir SET root = blob(
    '0005616261636B03010200 FFFFFFFF0702 66740302020003046E646F6E03030200'
  );
}

do_catchsql_test 1.3 {
  SELECT * FROM ft WHERE ft MATCH 'abandon';
} {1 {database disk image is malformed}}

#-------------------------------------------------------------------------
reset_db
do_execsql_test 2.0.0 {
  CREATE VIRTUAL TABLE ft USING fts3;
  INSERT INTO ft(ft) VALUES('nodesize=32');
}
do_test 2.0.1 {
  for {set i 0} {$i < 12} {incr i} {
    execsql {
      BEGIN;
        INSERT INTO ft VALUES('abc' || $i);
        INSERT INTO ft VALUES('abc' || $i || 'x' );
        INSERT INTO ft VALUES('abc' || $i || 'xx' );
      COMMIT
    }
  }
  execsql {
    SELECT count(*) FROM ft_segdir;
    SELECT count(*) FROM ft_segments;
  }
} {12 0}

do_execsql_test 2.1 {
  INSERT INTO ft(ft) VALUES('merge=1,4');
  SELECT count(*) FROM ft_segdir;
  SELECT count(*) FROM ft_segments;
} {12 3}

do_execsql_test 2.2 {
  SELECT quote(block) FROM ft_segments WHERE blockid=2
} {X'00056162633130031F0200'}

db func blob blob
do_execsql_test 2.3.1 {
  UPDATE ft_segments SET block = 
    blob('00056162633130031F0200 FFFFFFFF07FF55 66740302020003046E646F6E03030200')
    WHERE blockid=2;
} {}
do_catchsql_test 2.3.2 {
  INSERT INTO ft(ft) VALUES('merge=1,4');
} {1 {database disk image is malformed}}

do_execsql_test 2.4.1 {
  UPDATE ft_segments SET block = 
    blob('00056162633130031F0200 02FFFFFFFF07 66740302020003046E646F6E03030200')
    WHERE blockid=2;
} {}
do_catchsql_test 2.4.2 {
  INSERT INTO ft(ft) VALUES('merge=1,4');
} {1 {database disk image is malformed}}

do_execsql_test 2.5.1 {
  UPDATE ft_segments SET block = 
    blob('00056162633130031F0200 0202 6674 FFFFFF070302020003046E646F6E030200')
    WHERE blockid=2;
} {}
do_catchsql_test 2.5.2 {
  INSERT INTO ft(ft) VALUES('merge=1,4');
} {1 {database disk image is malformed}}

#-------------------------------------------------------------------------
reset_db
do_execsql_test 3.0.0 {
  CREATE VIRTUAL TABLE ft USING fts3;
  INSERT INTO ft(ft) VALUES('nodesize=32');
}
do_test 3.0.1 {
  execsql BEGIN
  for {set i 0} {$i < 20} {incr i} {
    execsql { INSERT INTO ft VALUES('abc' || $i) }
  }
  execsql {
    COMMIT;
    SELECT count(*) FROM ft_segdir;
    SELECT count(*) FROM ft_segments;
  }
} {1 5}

do_execsql_test 3.1 {
  SELECT quote(root) FROM ft_segdir
} {X'0101056162633132040136030132030136'}

db func blob blob
do_execsql_test 3.2 {
  UPDATE ft_segdir 
  SET root = blob('0101056162633132FFFFFFFF070236030132030136');
}

do_catchsql_test 3.1 {
  SELECT * FROM ft WHERE ft MATCH 'abc20'
} {1 {database disk image is malformed}}

finish_test


Changes to test/fts3expr.test.

405
406
407
408
409
410
411
412

413
414
415
416
417
418
419
405
406
407
408
409
410
411

412
413
414
415
416
417
418
419







-
+







# cases in the test code, which makes test coverage easier to measure.
# 
do_test fts3expr-5.1 {
  catchsql { SELECT fts3_exprtest('simple', 'a b') }
} {1 {Usage: fts3_exprtest(tokenizer, expr, col1, ...}}
do_test fts3expr-5.2 {
  catchsql { SELECT fts3_exprtest('doesnotexist', 'a b', 'c') }
} {1 {No such tokenizer module}}
} {1 {unknown tokenizer: doesnotexist}}
do_test fts3expr-5.3 {
  catchsql { SELECT fts3_exprtest('simple', 'a b OR', 'c') }
} {1 {Error parsing expression}}

#------------------------------------------------------------------------
# The next set of tests verifies that things actually work as they are
# supposed to when using the new syntax.

Changes to test/permutations.test.

251
252
253
254
255
256
257

258
259
260
261
262
263
264
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265







+







} -files {
  fts3aa.test fts3ab.test fts3ac.test fts3ad.test
  fts3ae.test fts3af.test fts3ag.test fts3ah.test
  fts3ai.test fts3aj.test fts3ak.test fts3al.test
  fts3am.test fts3an.test fts3ao.test fts3atoken.test
  fts3auto.test fts3aux1.test fts3aux2.test fts3b.test
  fts3comp1.test fts3conf.test fts3corrupt2.test fts3corrupt.test
  fts3corrupt4.test
  fts3cov.test fts3c.test fts3defer2.test fts3defer3.test
  fts3defer.test fts3drop.test fts3d.test fts3e.test
  fts3expr2.test fts3expr3.test fts3expr4.test fts3expr5.test
  fts3expr.test fts3fault2.test fts3fault.test fts3first.test
  fts3join.test fts3malloc.test fts3matchinfo.test fts3near.test
  fts3offsets.test fts3prefix2.test fts3prefix.test fts3query.test
  fts3shared.test fts3snippet.test fts3sort.test fts3tok1.test