/* ** The "printf" code that follows dates from the 1980's. It is in ** the public domain. ** ************************************************************************** ** ** This file contains code for a set of "printf"-like routines. These ** routines format strings much like the printf() from the standard C ** library, though the implementation here has enhancements to support ** SQLite. */ #include "sqliteInt.h" /* ** Conversion types fall into various categories as defined by the ** following enumeration. */ #define etRADIX 0 /* non-decimal integer types. %x %o */ #define etFLOAT 1 /* Floating point. %f */ #define etEXP 2 /* Exponentional notation. %e and %E */ #define etGENERIC 3 /* Floating or exponential, depending on exponent. %g */ #define etSIZE 4 /* Return number of characters processed so far. %n */ #define etSTRING 5 /* Strings. %s */ #define etDYNSTRING 6 /* Dynamically allocated strings. %z */ #define etPERCENT 7 /* Percent symbol. %% */ #define etCHARX 8 /* Characters. %c */ /* The rest are extensions, not normally found in printf() */ #define etSQLESCAPE 9 /* Strings with '\'' doubled. %q */ #define etSQLESCAPE2 10 /* Strings with '\'' doubled and enclosed in '', NULL pointers replaced by SQL NULL. %Q */ #define etTOKEN 11 /* a pointer to a Token structure */ #define etSRCLIST 12 /* a pointer to a SrcList */ #define etPOINTER 13 /* The %p conversion */ #define etSQLESCAPE3 14 /* %w -> Strings with '\"' doubled */ #define etORDINAL 15 /* %r -> 1st, 2nd, 3rd, 4th, etc. English only */ #define etDECIMAL 16 /* %d or %u, but not %x, %o */ #define etINVALID 17 /* Any unrecognized conversion type */ /* ** An "etByte" is an 8-bit unsigned value. */ typedef unsigned char etByte; /* ** Each builtin conversion character (ex: the 'd' in "%d") is described ** by an instance of the following structure */ typedef struct et_info { /* Information about each format field */ char fmttype; /* The format field code letter */ etByte base; /* The base for radix conversion */ etByte flags; /* One or more of FLAG_ constants below */ etByte type; /* Conversion paradigm */ etByte charset; /* Offset into aDigits[] of the digits string */ etByte prefix; /* Offset into aPrefix[] of the prefix string */ } et_info; /* ** Allowed values for et_info.flags */ #define FLAG_SIGNED 1 /* True if the value to convert is signed */ #define FLAG_STRING 4 /* Allow infinite precision */ /* ** The following table is searched linearly, so it is good to put the ** most frequently used conversion types first. */ static const char aDigits[] = "0123456789ABCDEF0123456789abcdef"; static const char aPrefix[] = "-x0\000X0"; static const et_info fmtinfo[] = { { 'd', 10, 1, etDECIMAL, 0, 0 }, { 's', 0, 4, etSTRING, 0, 0 }, { 'g', 0, 1, etGENERIC, 30, 0 }, { 'z', 0, 4, etDYNSTRING, 0, 0 }, { 'q', 0, 4, etSQLESCAPE, 0, 0 }, { 'Q', 0, 4, etSQLESCAPE2, 0, 0 }, { 'w', 0, 4, etSQLESCAPE3, 0, 0 }, { 'c', 0, 0, etCHARX, 0, 0 }, { 'o', 8, 0, etRADIX, 0, 2 }, { 'u', 10, 0, etDECIMAL, 0, 0 }, { 'x', 16, 0, etRADIX, 16, 1 }, { 'X', 16, 0, etRADIX, 0, 4 }, #ifndef SQLITE_OMIT_FLOATING_POINT { 'f', 0, 1, etFLOAT, 0, 0 }, { 'e', 0, 1, etEXP, 30, 0 }, { 'E', 0, 1, etEXP, 14, 0 }, { 'G', 0, 1, etGENERIC, 14, 0 }, #endif { 'i', 10, 1, etDECIMAL, 0, 0 }, { 'n', 0, 0, etSIZE, 0, 0 }, { '%', 0, 0, etPERCENT, 0, 0 }, { 'p', 16, 0, etPOINTER, 0, 1 }, /* All the rest are undocumented and are for internal use only */ { 'T', 0, 0, etTOKEN, 0, 0 }, { 'S', 0, 0, etSRCLIST, 0, 0 }, { 'r', 10, 1, etORDINAL, 0, 0 }, }; /* ** If SQLITE_OMIT_FLOATING_POINT is defined, then none of the floating point ** conversions will work. */ #ifndef SQLITE_OMIT_FLOATING_POINT /* ** "*val" is a double such that 0.1 <= *val < 10.0 ** Return the ascii code for the leading digit of *val, then ** multiply "*val" by 10.0 to renormalize. ** ** Example: ** input: *val = 3.14159 ** output: *val = 1.4159 function return = '3' ** ** The counter *cnt is incremented each time. After counter exceeds ** 16 (the number of significant digits in a 64-bit float) '0' is ** always returned. */ static char et_getdigit(LONGDOUBLE_TYPE *val, int *cnt){ int digit; LONGDOUBLE_TYPE d; if( (*cnt)<=0 ) return '0'; (*cnt)--; digit = (int)*val; d = digit; digit += '0'; *val = (*val - d)*10.0; return (char)digit; } #endif /* SQLITE_OMIT_FLOATING_POINT */ /* ** Set the StrAccum object to an error mode. */ static void setStrAccumError(StrAccum *p, u8 eError){ assert( eError==SQLITE_NOMEM || eError==SQLITE_TOOBIG ); p->accError = eError; p->nAlloc = 0; } /* ** Extra argument values from a PrintfArguments object */ static sqlite3_int64 getIntArg(PrintfArguments *p){ if( p->nArg<=p->nUsed ) return 0; return sqlite3_value_int64(p->apArg[p->nUsed++]); } static double getDoubleArg(PrintfArguments *p){ if( p->nArg<=p->nUsed ) return 0.0; return sqlite3_value_double(p->apArg[p->nUsed++]); } static char *getTextArg(PrintfArguments *p){ if( p->nArg<=p->nUsed ) return 0; return (char*)sqlite3_value_text(p->apArg[p->nUsed++]); } /* ** On machines with a small stack size, you can redefine the ** SQLITE_PRINT_BUF_SIZE to be something smaller, if desired. */ #ifndef SQLITE_PRINT_BUF_SIZE # define SQLITE_PRINT_BUF_SIZE 70 #endif #define etBUFSIZE SQLITE_PRINT_BUF_SIZE /* Size of the output buffer */ /* ** Render a string given by "fmt" into the StrAccum object. */ void sqlite3_str_vappendf( sqlite3_str *pAccum, /* Accumulate results here */ const char *fmt, /* Format string */ va_list ap /* arguments */ ){ int c; /* Next character in the format string */ char *bufpt; /* Pointer to the conversion buffer */ int precision; /* Precision of the current field */ int length; /* Length of the field */ int idx; /* A general purpose loop counter */ int width; /* Width of the current field */ etByte flag_leftjustify; /* True if "-" flag is present */ etByte flag_prefix; /* '+' or ' ' or 0 for prefix */ etByte flag_alternateform; /* True if "#" flag is present */ etByte flag_altform2; /* True if "!" flag is present */ etByte flag_zeropad; /* True if field width constant starts with zero */ etByte flag_long; /* 1 for the "l" flag, 2 for "ll", 0 by default */ etByte done; /* Loop termination flag */ etByte cThousand; /* Thousands separator for %d and %u */ etByte xtype = etINVALID; /* Conversion paradigm */ u8 bArgList; /* True for SQLITE_PRINTF_SQLFUNC */ char prefix; /* Prefix character. "+" or "-" or " " or '\0'. */ sqlite_uint64 longvalue; /* Value for integer types */ LONGDOUBLE_TYPE realvalue; /* Value for real types */ const et_info *infop; /* Pointer to the appropriate info structure */ char *zOut; /* Rendering buffer */ int nOut; /* Size of the rendering buffer */ char *zExtra = 0; /* Malloced memory used by some conversion */ #ifndef SQLITE_OMIT_FLOATING_POINT int exp, e2; /* exponent of real numbers */ int nsd; /* Number of significant digits returned */ double rounder; /* Used for rounding floating point values */ etByte flag_dp; /* True if decimal point should be shown */ etByte flag_rtz; /* True if trailing zeros should be removed */ #endif PrintfArguments *pArgList = 0; /* Arguments for SQLITE_PRINTF_SQLFUNC */ char buf[etBUFSIZE]; /* Conversion buffer */ /* pAccum never starts out with an empty buffer that was obtained from ** malloc(). This precondition is required by the mprintf("%z...") ** optimization. */ assert( pAccum->nChar>0 || (pAccum->printfFlags&SQLITE_PRINTF_MALLOCED)==0 ); bufpt = 0; if( (pAccum->printfFlags & SQLITE_PRINTF_SQLFUNC)!=0 ){ pArgList = va_arg(ap, PrintfArguments*); bArgList = 1; }else{ bArgList = 0; } for(; (c=(*fmt))!=0; ++fmt){ if( c!='%' ){ bufpt = (char *)fmt; #if HAVE_STRCHRNUL fmt = strchrnul(fmt, '%'); #else do{ fmt++; }while( *fmt && *fmt != '%' ); #endif sqlite3_str_append(pAccum, bufpt, (int)(fmt - bufpt)); if( *fmt==0 ) break; } if( (c=(*++fmt))==0 ){ sqlite3_str_append(pAccum, "%", 1); break; } /* Find out what flags are present */ flag_leftjustify = flag_prefix = cThousand = flag_alternateform = flag_altform2 = flag_zeropad = 0; done = 0; do{ switch( c ){ case '-': flag_leftjustify = 1; break; case '+': flag_prefix = '+'; break; case ' ': flag_prefix = ' '; break; case '#': flag_alternateform = 1; break; case '!': flag_altform2 = 1; break; case '0': flag_zeropad = 1; break; case ',': cThousand = ','; break; default: done = 1; break; } }while( !done && (c=(*++fmt))!=0 ); /* Get the field width */ if( c=='*' ){ if( bArgList ){ width = (int)getIntArg(pArgList); }else{ width = va_arg(ap,int); } if( width<0 ){ flag_leftjustify = 1; width = width >= -2147483647 ? -width : 0; } c = *++fmt; }else{ unsigned wx = 0; while( c>='0' && c<='9' ){ wx = wx*10 + c - '0'; c = *++fmt; } testcase( wx>0x7fffffff ); width = wx & 0x7fffffff; } assert( width>=0 ); #ifdef SQLITE_PRINTF_PRECISION_LIMIT if( width>SQLITE_PRINTF_PRECISION_LIMIT ){ width = SQLITE_PRINTF_PRECISION_LIMIT; } #endif /* Get the precision */ if( c=='.' ){ c = *++fmt; if( c=='*' ){ if( bArgList ){ precision = (int)getIntArg(pArgList); }else{ precision = va_arg(ap,int); } c = *++fmt; if( precision<0 ){ precision = precision >= -2147483647 ? -precision : -1; } }else{ unsigned px = 0; while( c>='0' && c<='9' ){ px = px*10 + c - '0'; c = *++fmt; } testcase( px>0x7fffffff ); precision = px & 0x7fffffff; } }else{ precision = -1; } assert( precision>=(-1) ); #ifdef SQLITE_PRINTF_PRECISION_LIMIT if( precision>SQLITE_PRINTF_PRECISION_LIMIT ){ precision = SQLITE_PRINTF_PRECISION_LIMIT; } #endif /* Get the conversion type modifier */ if( c=='l' ){ flag_long = 1; c = *++fmt; if( c=='l' ){ flag_long = 2; c = *++fmt; } }else{ flag_long = 0; } /* Fetch the info entry for the field */ infop = &fmtinfo[0]; xtype = etINVALID; for(idx=0; idxtype; break; } } /* ** At this point, variables are initialized as follows: ** ** flag_alternateform TRUE if a '#' is present. ** flag_altform2 TRUE if a '!' is present. ** flag_prefix '+' or ' ' or zero ** flag_leftjustify TRUE if a '-' is present or if the ** field width was negative. ** flag_zeropad TRUE if the width began with 0. ** flag_long 1 for "l", 2 for "ll" ** width The specified field width. This is ** always non-negative. Zero is the default. ** precision The specified precision. The default ** is -1. ** xtype The class of the conversion. ** infop Pointer to the appropriate info struct. */ switch( xtype ){ case etPOINTER: flag_long = sizeof(char*)==sizeof(i64) ? 2 : sizeof(char*)==sizeof(long int) ? 1 : 0; /* Fall through into the next case */ case etORDINAL: case etRADIX: cThousand = 0; /* Fall through into the next case */ case etDECIMAL: if( infop->flags & FLAG_SIGNED ){ i64 v; if( bArgList ){ v = getIntArg(pArgList); }else if( flag_long ){ if( flag_long==2 ){ v = va_arg(ap,i64) ; }else{ v = va_arg(ap,long int); } }else{ v = va_arg(ap,int); } if( v<0 ){ if( v==SMALLEST_INT64 ){ longvalue = ((u64)1)<<63; }else{ longvalue = -v; } prefix = '-'; }else{ longvalue = v; prefix = flag_prefix; } }else{ if( bArgList ){ longvalue = (u64)getIntArg(pArgList); }else if( flag_long ){ if( flag_long==2 ){ longvalue = va_arg(ap,u64); }else{ longvalue = va_arg(ap,unsigned long int); } }else{ longvalue = va_arg(ap,unsigned int); } prefix = 0; } if( longvalue==0 ) flag_alternateform = 0; if( flag_zeropad && precision=4 || (longvalue/10)%10==1 ){ x = 0; } *(--bufpt) = zOrd[x*2+1]; *(--bufpt) = zOrd[x*2]; } { const char *cset = &aDigits[infop->charset]; u8 base = infop->base; do{ /* Convert to ascii */ *(--bufpt) = cset[longvalue%base]; longvalue = longvalue/base; }while( longvalue>0 ); } length = (int)(&zOut[nOut-1]-bufpt); while( precision>length ){ *(--bufpt) = '0'; /* Zero pad */ length++; } if( cThousand ){ int nn = (length - 1)/3; /* Number of "," to insert */ int ix = (length - 1)%3 + 1; bufpt -= nn; for(idx=0; nn>0; idx++){ bufpt[idx] = bufpt[idx+nn]; ix--; if( ix==0 ){ bufpt[++idx] = cThousand; nn--; ix = 3; } } } if( prefix ) *(--bufpt) = prefix; /* Add sign */ if( flag_alternateform && infop->prefix ){ /* Add "0" or "0x" */ const char *pre; char x; pre = &aPrefix[infop->prefix]; for(; (x=(*pre))!=0; pre++) *(--bufpt) = x; } length = (int)(&zOut[nOut-1]-bufpt); break; case etFLOAT: case etEXP: case etGENERIC: if( bArgList ){ realvalue = getDoubleArg(pArgList); }else{ realvalue = va_arg(ap,double); } #ifdef SQLITE_OMIT_FLOATING_POINT length = 0; #else if( precision<0 ) precision = 6; /* Set default precision */ if( realvalue<0.0 ){ realvalue = -realvalue; prefix = '-'; }else{ prefix = flag_prefix; } if( xtype==etGENERIC && precision>0 ) precision--; testcase( precision>0xfff ); for(idx=precision&0xfff, rounder=0.5; idx>0; idx--, rounder*=0.1){} if( xtype==etFLOAT ) realvalue += rounder; /* Normalize realvalue to within 10.0 > realvalue >= 1.0 */ exp = 0; if( sqlite3IsNaN((double)realvalue) ){ bufpt = "NaN"; length = 3; break; } if( realvalue>0.0 ){ LONGDOUBLE_TYPE scale = 1.0; while( realvalue>=1e100*scale && exp<=350 ){ scale *= 1e100;exp+=100;} while( realvalue>=1e10*scale && exp<=350 ){ scale *= 1e10; exp+=10; } while( realvalue>=10.0*scale && exp<=350 ){ scale *= 10.0; exp++; } realvalue /= scale; while( realvalue<1e-8 ){ realvalue *= 1e8; exp-=8; } while( realvalue<1.0 ){ realvalue *= 10.0; exp--; } if( exp>350 ){ bufpt = buf; buf[0] = prefix; memcpy(buf+(prefix!=0),"Inf",4); length = 3+(prefix!=0); break; } } bufpt = buf; /* ** If the field type is etGENERIC, then convert to either etEXP ** or etFLOAT, as appropriate. */ if( xtype!=etFLOAT ){ realvalue += rounder; if( realvalue>=10.0 ){ realvalue *= 0.1; exp++; } } if( xtype==etGENERIC ){ flag_rtz = !flag_alternateform; if( exp<-4 || exp>precision ){ xtype = etEXP; }else{ precision = precision - exp; xtype = etFLOAT; } }else{ flag_rtz = flag_altform2; } if( xtype==etEXP ){ e2 = 0; }else{ e2 = exp; } if( MAX(e2,0)+(i64)precision+(i64)width > etBUFSIZE - 15 ){ bufpt = zExtra = sqlite3Malloc( MAX(e2,0)+(i64)precision+(i64)width+15 ); if( bufpt==0 ){ setStrAccumError(pAccum, SQLITE_NOMEM); return; } } zOut = bufpt; nsd = 16 + flag_altform2*10; flag_dp = (precision>0 ?1:0) | flag_alternateform | flag_altform2; /* The sign in front of the number */ if( prefix ){ *(bufpt++) = prefix; } /* Digits prior to the decimal point */ if( e2<0 ){ *(bufpt++) = '0'; }else{ for(; e2>=0; e2--){ *(bufpt++) = et_getdigit(&realvalue,&nsd); } } /* The decimal point */ if( flag_dp ){ *(bufpt++) = '.'; } /* "0" digits after the decimal point but before the first ** significant digit of the number */ for(e2++; e2<0; precision--, e2++){ assert( precision>0 ); *(bufpt++) = '0'; } /* Significant digits after the decimal point */ while( (precision--)>0 ){ *(bufpt++) = et_getdigit(&realvalue,&nsd); } /* Remove trailing zeros and the "." if no digits follow the "." */ if( flag_rtz && flag_dp ){ while( bufpt[-1]=='0' ) *(--bufpt) = 0; assert( bufpt>zOut ); if( bufpt[-1]=='.' ){ if( flag_altform2 ){ *(bufpt++) = '0'; }else{ *(--bufpt) = 0; } } } /* Add the "eNNN" suffix */ if( xtype==etEXP ){ *(bufpt++) = aDigits[infop->charset]; if( exp<0 ){ *(bufpt++) = '-'; exp = -exp; }else{ *(bufpt++) = '+'; } if( exp>=100 ){ *(bufpt++) = (char)((exp/100)+'0'); /* 100's digit */ exp %= 100; } *(bufpt++) = (char)(exp/10+'0'); /* 10's digit */ *(bufpt++) = (char)(exp%10+'0'); /* 1's digit */ } *bufpt = 0; /* The converted number is in buf[] and zero terminated. Output it. ** Note that the number is in the usual order, not reversed as with ** integer conversions. */ length = (int)(bufpt-zOut); bufpt = zOut; /* Special case: Add leading zeros if the flag_zeropad flag is ** set and we are not left justified */ if( flag_zeropad && !flag_leftjustify && length < width){ int i; int nPad = width - length; for(i=width; i>=nPad; i--){ bufpt[i] = bufpt[i-nPad]; } i = prefix!=0; while( nPad-- ) bufpt[i++] = '0'; length = width; } #endif /* !defined(SQLITE_OMIT_FLOATING_POINT) */ break; case etSIZE: if( !bArgList ){ *(va_arg(ap,int*)) = pAccum->nChar; } length = width = 0; break; case etPERCENT: buf[0] = '%'; bufpt = buf; length = 1; break; case etCHARX: if( bArgList ){ bufpt = getTextArg(pArgList); length = 1; if( bufpt ){ buf[0] = c = *(bufpt++); if( (c&0xc0)==0xc0 ){ while( length<4 && (bufpt[0]&0xc0)==0x80 ){ buf[length++] = *(bufpt++); } } }else{ buf[0] = 0; } }else{ unsigned int ch = va_arg(ap,unsigned int); if( ch<0x00080 ){ buf[0] = ch & 0xff; length = 1; }else if( ch<0x00800 ){ buf[0] = 0xc0 + (u8)((ch>>6)&0x1f); buf[1] = 0x80 + (u8)(ch & 0x3f); length = 2; }else if( ch<0x10000 ){ buf[0] = 0xe0 + (u8)((ch>>12)&0x0f); buf[1] = 0x80 + (u8)((ch>>6) & 0x3f); buf[2] = 0x80 + (u8)(ch & 0x3f); length = 3; }else{ buf[0] = 0xf0 + (u8)((ch>>18) & 0x07); buf[1] = 0x80 + (u8)((ch>>12) & 0x3f); buf[2] = 0x80 + (u8)((ch>>6) & 0x3f); buf[3] = 0x80 + (u8)(ch & 0x3f); length = 4; } } if( precision>1 ){ width -= precision-1; if( width>1 && !flag_leftjustify ){ sqlite3_str_appendchar(pAccum, width-1, ' '); width = 0; } while( precision-- > 1 ){ sqlite3_str_append(pAccum, buf, length); } } bufpt = buf; flag_altform2 = 1; goto adjust_width_for_utf8; case etSTRING: case etDYNSTRING: if( bArgList ){ bufpt = getTextArg(pArgList); xtype = etSTRING; }else{ bufpt = va_arg(ap,char*); } if( bufpt==0 ){ bufpt = ""; }else if( xtype==etDYNSTRING ){ if( pAccum->nChar==0 && pAccum->mxAlloc && width==0 && precision<0 ){ /* Special optimization for sqlite3_mprintf("%z..."): ** Extend an existing memory allocation rather than creating ** a new one. */ assert( (pAccum->printfFlags&SQLITE_PRINTF_MALLOCED)==0 ); pAccum->zText = bufpt; pAccum->nAlloc = sqlite3DbMallocSize(pAccum->db, bufpt); pAccum->nChar = 0x7fffffff & (int)strlen(bufpt); pAccum->printfFlags |= SQLITE_PRINTF_MALLOCED; length = 0; break; } zExtra = bufpt; } if( precision>=0 ){ if( flag_altform2 ){ /* Set length to the number of bytes needed in order to display ** precision characters */ unsigned char *z = (unsigned char*)bufpt; while( precision-- > 0 && z[0] ){ SQLITE_SKIP_UTF8(z); } length = (int)(z - (unsigned char*)bufpt); }else{ for(length=0; length0 ){ /* Adjust width to account for extra bytes in UTF-8 characters */ int ii = length - 1; while( ii>=0 ) if( (bufpt[ii--] & 0xc0)==0x80 ) width++; } break; case etSQLESCAPE: /* %q: Escape ' characters */ case etSQLESCAPE2: /* %Q: Escape ' and enclose in '...' */ case etSQLESCAPE3: { /* %w: Escape " characters */ int i, j, k, n, isnull; int needQuote; char ch; char q = ((xtype==etSQLESCAPE3)?'"':'\''); /* Quote character */ char *escarg; if( bArgList ){ escarg = getTextArg(pArgList); }else{ escarg = va_arg(ap,char*); } isnull = escarg==0; if( isnull ) escarg = (xtype==etSQLESCAPE2 ? "NULL" : "(NULL)"); /* For %q, %Q, and %w, the precision is the number of byte (or ** characters if the ! flags is present) to use from the input. ** Because of the extra quoting characters inserted, the number ** of output characters may be larger than the precision. */ k = precision; for(i=n=0; k!=0 && (ch=escarg[i])!=0; i++, k--){ if( ch==q ) n++; if( flag_altform2 && (ch&0xc0)==0xc0 ){ while( (escarg[i+1]&0xc0)==0x80 ){ i++; } } } needQuote = !isnull && xtype==etSQLESCAPE2; n += i + 3; if( n>etBUFSIZE ){ bufpt = zExtra = sqlite3Malloc( n ); if( bufpt==0 ){ setStrAccumError(pAccum, SQLITE_NOMEM); return; } }else{ bufpt = buf; } j = 0; if( needQuote ) bufpt[j++] = q; k = i; for(i=0; iprintfFlags & SQLITE_PRINTF_INTERNAL)==0 ) return; pToken = va_arg(ap, Token*); assert( bArgList==0 ); if( pToken && pToken->n ){ sqlite3_str_append(pAccum, (const char*)pToken->z, pToken->n); } length = width = 0; break; } case etSRCLIST: { SrcList *pSrc; int k; struct SrcList_item *pItem; if( (pAccum->printfFlags & SQLITE_PRINTF_INTERNAL)==0 ) return; pSrc = va_arg(ap, SrcList*); k = va_arg(ap, int); pItem = &pSrc->a[k]; assert( bArgList==0 ); assert( k>=0 && knSrc ); if( pItem->zDatabase ){ sqlite3_str_appendall(pAccum, pItem->zDatabase); sqlite3_str_append(pAccum, ".", 1); } sqlite3_str_appendall(pAccum, pItem->zName); length = width = 0; break; } default: { assert( xtype==etINVALID ); return; } }/* End switch over the format type */ /* ** The text of the conversion is pointed to by "bufpt" and is ** "length" characters long. The field width is "width". Do ** the output. Both length and width are in bytes, not characters, ** at this point. If the "!" flag was present on string conversions ** indicating that width and precision should be expressed in characters, ** then the values have been translated prior to reaching this point. */ width -= length; if( width>0 ){ if( !flag_leftjustify ) sqlite3_str_appendchar(pAccum, width, ' '); sqlite3_str_append(pAccum, bufpt, length); if( flag_leftjustify ) sqlite3_str_appendchar(pAccum, width, ' '); }else{ sqlite3_str_append(pAccum, bufpt, length); } if( zExtra ){ sqlite3DbFree(pAccum->db, zExtra); zExtra = 0; } }/* End for loop over the format string */ } /* End of function */ /* ** Enlarge the memory allocation on a StrAccum object so that it is ** able to accept at least N more bytes of text. ** ** Return the number of bytes of text that StrAccum is able to accept ** after the attempted enlargement. The value returned might be zero. */ static int sqlite3StrAccumEnlarge(StrAccum *p, int N){ char *zNew; assert( p->nChar+(i64)N >= p->nAlloc ); /* Only called if really needed */ if( p->accError ){ testcase(p->accError==SQLITE_TOOBIG); testcase(p->accError==SQLITE_NOMEM); return 0; } if( p->mxAlloc==0 ){ N = p->nAlloc - p->nChar - 1; setStrAccumError(p, SQLITE_TOOBIG); return N; }else{ char *zOld = isMalloced(p) ? p->zText : 0; i64 szNew = p->nChar; szNew += N + 1; if( szNew+p->nChar<=p->mxAlloc ){ /* Force exponential buffer size growth as long as it does not overflow, ** to avoid having to call this routine too often */ szNew += p->nChar; } if( szNew > p->mxAlloc ){ sqlite3_str_reset(p); setStrAccumError(p, SQLITE_TOOBIG); return 0; }else{ p->nAlloc = (int)szNew; } if( p->db ){ zNew = sqlite3DbRealloc(p->db, zOld, p->nAlloc); }else{ zNew = sqlite3_realloc64(zOld, p->nAlloc); } if( zNew ){ assert( p->zText!=0 || p->nChar==0 ); if( !isMalloced(p) && p->nChar>0 ) memcpy(zNew, p->zText, p->nChar); p->zText = zNew; p->nAlloc = sqlite3DbMallocSize(p->db, zNew); p->printfFlags |= SQLITE_PRINTF_MALLOCED; }else{ sqlite3_str_reset(p); setStrAccumError(p, SQLITE_NOMEM); return 0; } } return N; } /* ** Append N copies of character c to the given string buffer. */ void sqlite3_str_appendchar(sqlite3_str *p, int N, char c){ testcase( p->nChar + (i64)N > 0x7fffffff ); if( p->nChar+(i64)N >= p->nAlloc && (N = sqlite3StrAccumEnlarge(p, N))<=0 ){ return; } while( (N--)>0 ) p->zText[p->nChar++] = c; } /* ** The StrAccum "p" is not large enough to accept N new bytes of z[]. ** So enlarge if first, then do the append. ** ** This is a helper routine to sqlite3_str_append() that does special-case ** work (enlarging the buffer) using tail recursion, so that the ** sqlite3_str_append() routine can use fast calling semantics. */ static void SQLITE_NOINLINE enlargeAndAppend(StrAccum *p, const char *z, int N){ N = sqlite3StrAccumEnlarge(p, N); if( N>0 ){ memcpy(&p->zText[p->nChar], z, N); p->nChar += N; } } /* ** Append N bytes of text from z to the StrAccum object. Increase the ** size of the memory allocation for StrAccum if necessary. */ void sqlite3_str_append(sqlite3_str *p, const char *z, int N){ assert( z!=0 || N==0 ); assert( p->zText!=0 || p->nChar==0 || p->accError ); assert( N>=0 ); assert( p->accError==0 || p->nAlloc==0 ); if( p->nChar+N >= p->nAlloc ){ enlargeAndAppend(p,z,N); }else if( N ){ assert( p->zText ); p->nChar += N; memcpy(&p->zText[p->nChar-N], z, N); } } /* ** Append the complete text of zero-terminated string z[] to the p string. */ void sqlite3_str_appendall(sqlite3_str *p, const char *z){ sqlite3_str_append(p, z, sqlite3Strlen30(z)); } /* ** Finish off a string by making sure it is zero-terminated. ** Return a pointer to the resulting string. Return a NULL ** pointer if any kind of error was encountered. */ static SQLITE_NOINLINE char *strAccumFinishRealloc(StrAccum *p){ char *zText; assert( p->mxAlloc>0 && !isMalloced(p) ); zText = sqlite3DbMallocRaw(p->db, p->nChar+1 ); if( zText ){ memcpy(zText, p->zText, p->nChar+1); p->printfFlags |= SQLITE_PRINTF_MALLOCED; }else{ setStrAccumError(p, SQLITE_NOMEM); } p->zText = zText; return zText; } char *sqlite3StrAccumFinish(StrAccum *p){ if( p->zText ){ p->zText[p->nChar] = 0; if( p->mxAlloc>0 && !isMalloced(p) ){ return strAccumFinishRealloc(p); } } return p->zText; } /* ** This singleton is an sqlite3_str object that is returned if ** sqlite3_malloc() fails to provide space for a real one. This ** sqlite3_str object accepts no new text and always returns ** an SQLITE_NOMEM error. */ static sqlite3_str sqlite3OomStr = { 0, 0, 0, 0, 0, SQLITE_NOMEM, 0 }; /* Finalize a string created using sqlite3_str_new(). */ char *sqlite3_str_finish(sqlite3_str *p){ char *z; if( p!=0 && p!=&sqlite3OomStr ){ z = sqlite3StrAccumFinish(p); sqlite3_free(p); }else{ z = 0; } return z; } /* Return any error code associated with p */ int sqlite3_str_errcode(sqlite3_str *p){ return p ? p->accError : SQLITE_NOMEM; } /* Return the current length of p in bytes */ int sqlite3_str_length(sqlite3_str *p){ return p ? p->nChar : 0; } /* Return the current value for p */ char *sqlite3_str_value(sqlite3_str *p){ if( p==0 || p->nChar==0 ) return 0; p->zText[p->nChar] = 0; return p->zText; } /* ** Reset an StrAccum string. Reclaim all malloced memory. */ void sqlite3_str_reset(StrAccum *p){ if( isMalloced(p) ){ sqlite3DbFree(p->db, p->zText); p->printfFlags &= ~SQLITE_PRINTF_MALLOCED; } p->nAlloc = 0; p->nChar = 0; p->zText = 0; } /* ** Initialize a string accumulator. ** ** p: The accumulator to be initialized. ** db: Pointer to a database connection. May be NULL. Lookaside ** memory is used if not NULL. db->mallocFailed is set appropriately ** when not NULL. ** zBase: An initial buffer. May be NULL in which case the initial buffer ** is malloced. ** n: Size of zBase in bytes. If total space requirements never exceed ** n then no memory allocations ever occur. ** mx: Maximum number of bytes to accumulate. If mx==0 then no memory ** allocations will ever occur. */ void sqlite3StrAccumInit(StrAccum *p, sqlite3 *db, char *zBase, int n, int mx){ p->zText = zBase; p->db = db; p->nAlloc = n; p->mxAlloc = mx; p->nChar = 0; p->accError = 0; p->printfFlags = 0; } /* Allocate and initialize a new dynamic string object */ sqlite3_str *sqlite3_str_new(sqlite3 *db){ sqlite3_str *p = sqlite3_malloc64(sizeof(*p)); if( p ){ sqlite3StrAccumInit(p, 0, 0, 0, db ? db->aLimit[SQLITE_LIMIT_LENGTH] : SQLITE_MAX_LENGTH); }else{ p = &sqlite3OomStr; } return p; } /* ** Print into memory obtained from sqliteMalloc(). Use the internal ** %-conversion extensions. */ char *sqlite3VMPrintf(sqlite3 *db, const char *zFormat, va_list ap){ char *z; char zBase[SQLITE_PRINT_BUF_SIZE]; StrAccum acc; assert( db!=0 ); sqlite3StrAccumInit(&acc, db, zBase, sizeof(zBase), db->aLimit[SQLITE_LIMIT_LENGTH]); acc.printfFlags = SQLITE_PRINTF_INTERNAL; sqlite3_str_vappendf(&acc, zFormat, ap); z = sqlite3StrAccumFinish(&acc); if( acc.accError==SQLITE_NOMEM ){ sqlite3OomFault(db); } return z; } /* ** Print into memory obtained from sqliteMalloc(). Use the internal ** %-conversion extensions. */ char *sqlite3MPrintf(sqlite3 *db, const char *zFormat, ...){ va_list ap; char *z; va_start(ap, zFormat); z = sqlite3VMPrintf(db, zFormat, ap); va_end(ap); return z; } /* ** Print into memory obtained from sqlite3_malloc(). Omit the internal ** %-conversion extensions. */ char *sqlite3_vmprintf(const char *zFormat, va_list ap){ char *z; char zBase[SQLITE_PRINT_BUF_SIZE]; StrAccum acc; #ifdef SQLITE_ENABLE_API_ARMOR if( zFormat==0 ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif #ifndef SQLITE_OMIT_AUTOINIT if( sqlite3_initialize() ) return 0; #endif sqlite3StrAccumInit(&acc, 0, zBase, sizeof(zBase), SQLITE_MAX_LENGTH); sqlite3_str_vappendf(&acc, zFormat, ap); z = sqlite3StrAccumFinish(&acc); return z; } /* ** Print into memory obtained from sqlite3_malloc()(). Omit the internal ** %-conversion extensions. */ char *sqlite3_mprintf(const char *zFormat, ...){ va_list ap; char *z; #ifndef SQLITE_OMIT_AUTOINIT if( sqlite3_initialize() ) return 0; #endif va_start(ap, zFormat); z = sqlite3_vmprintf(zFormat, ap); va_end(ap); return z; } /* ** sqlite3_snprintf() works like snprintf() except that it ignores the ** current locale settings. This is important for SQLite because we ** are not able to use a "," as the decimal point in place of "." as ** specified by some locales. ** ** Oops: The first two arguments of sqlite3_snprintf() are backwards ** from the snprintf() standard. Unfortunately, it is too late to change ** this without breaking compatibility, so we just have to live with the ** mistake. ** ** sqlite3_vsnprintf() is the varargs version. */ char *sqlite3_vsnprintf(int n, char *zBuf, const char *zFormat, va_list ap){ StrAccum acc; if( n<=0 ) return zBuf; #ifdef SQLITE_ENABLE_API_ARMOR if( zBuf==0 || zFormat==0 ) { (void)SQLITE_MISUSE_BKPT; if( zBuf ) zBuf[0] = 0; return zBuf; } #endif sqlite3StrAccumInit(&acc, 0, zBuf, n, 0); sqlite3_str_vappendf(&acc, zFormat, ap); zBuf[acc.nChar] = 0; return zBuf; } char *sqlite3_snprintf(int n, char *zBuf, const char *zFormat, ...){ char *z; va_list ap; va_start(ap,zFormat); z = sqlite3_vsnprintf(n, zBuf, zFormat, ap); va_end(ap); return z; } /* ** This is the routine that actually formats the sqlite3_log() message. ** We house it in a separate routine from sqlite3_log() to avoid using ** stack space on small-stack systems when logging is disabled. ** ** sqlite3_log() must render into a static buffer. It cannot dynamically ** allocate memory because it might be called while the memory allocator ** mutex is held. ** ** sqlite3_str_vappendf() might ask for *temporary* memory allocations for ** certain format characters (%q) or for very large precisions or widths. ** Care must be taken that any sqlite3_log() calls that occur while the ** memory mutex is held do not use these mechanisms. */ static void renderLogMsg(int iErrCode, const char *zFormat, va_list ap){ StrAccum acc; /* String accumulator */ char zMsg[SQLITE_PRINT_BUF_SIZE*3]; /* Complete log message */ sqlite3StrAccumInit(&acc, 0, zMsg, sizeof(zMsg), 0); sqlite3_str_vappendf(&acc, zFormat, ap); sqlite3GlobalConfig.xLog(sqlite3GlobalConfig.pLogArg, iErrCode, sqlite3StrAccumFinish(&acc)); } /* ** Format and write a message to the log if logging is enabled. */ void sqlite3_log(int iErrCode, const char *zFormat, ...){ va_list ap; /* Vararg list */ if( sqlite3GlobalConfig.xLog ){ va_start(ap, zFormat); renderLogMsg(iErrCode, zFormat, ap); va_end(ap); } } #if defined(SQLITE_DEBUG) || defined(SQLITE_HAVE_OS_TRACE) /* ** A version of printf() that understands %lld. Used for debugging. ** The printf() built into some versions of windows does not understand %lld ** and segfaults if you give it a long long int. */ void sqlite3DebugPrintf(const char *zFormat, ...){ va_list ap; StrAccum acc; char zBuf[500]; sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0); va_start(ap,zFormat); sqlite3_str_vappendf(&acc, zFormat, ap); va_end(ap); sqlite3StrAccumFinish(&acc); #ifdef SQLITE_OS_TRACE_PROC { extern void SQLITE_OS_TRACE_PROC(const char *zBuf, int nBuf); SQLITE_OS_TRACE_PROC(zBuf, sizeof(zBuf)); } #else fprintf(stdout,"%s", zBuf); fflush(stdout); #endif } #endif /* ** variable-argument wrapper around sqlite3_str_vappendf(). The bFlags argument ** can contain the bit SQLITE_PRINTF_INTERNAL enable internal formats. */ void sqlite3_str_appendf(StrAccum *p, const char *zFormat, ...){ va_list ap; va_start(ap,zFormat); sqlite3_str_vappendf(p, zFormat, ap); va_end(ap); }