Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Merge the latest trunk changes into the apple-osx branch. |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | apple-osx |
Files: | files | file ages | folders |
SHA1: |
f9b149e53815235aaf92f722e37c4819 |
User & Date: | drh 2011-05-05 15:52:46.864 |
Context
2011-05-19
| ||
01:51 | Pull all the latest trunk changes, and especially the fix for WAL cache spills causing transactions to disappear, into the apple-osx branch. (check-in: 8d1a6bb002 user: drh tags: apple-osx) | |
2011-05-12
| ||
15:32 | Pull in the patches to support read-only WAL databases into a new branch off of the apple-osx branch. This also pulls in all the other pending 3.7.7 changes such as URI support. (check-in: 97b9801076 user: drh tags: apple-wal-readonly) | |
2011-05-05
| ||
15:52 | Merge the latest trunk changes into the apple-osx branch. (check-in: f9b149e538 user: drh tags: apple-osx) | |
15:39 | Bump the version number to 3.7.7 on account of the new sqlite3_vtab_config() and sqlite3_vtab_on_conflict() interfaces. Updates to the documentation on those interfaces. (check-in: 930be6a1bd user: drh tags: trunk) | |
2011-04-13
| ||
15:42 | Update the apple-osx branch to version 3.7.6.1. (check-in: 289194d68e user: drh tags: apple-osx) | |
Changes
Changes to VERSION.
|
| | | 1 | 3.7.7 |
Changes to configure.
1 2 | #! /bin/sh # Guess values for system-dependent variables and create Makefiles. | | | 1 2 3 4 5 6 7 8 9 10 | #! /bin/sh # Guess values for system-dependent variables and create Makefiles. # Generated by GNU Autoconf 2.62 for sqlite 3.7.7. # # Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, # 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc. # This configure script is free software; the Free Software Foundation # gives unlimited permission to copy, distribute and modify it. ## --------------------- ## ## M4sh Initialization. ## |
︙ | ︙ | |||
739 740 741 742 743 744 745 | MFLAGS= MAKEFLAGS= SHELL=${CONFIG_SHELL-/bin/sh} # Identity of this package. PACKAGE_NAME='sqlite' PACKAGE_TARNAME='sqlite' | | | | 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 | MFLAGS= MAKEFLAGS= SHELL=${CONFIG_SHELL-/bin/sh} # Identity of this package. PACKAGE_NAME='sqlite' PACKAGE_TARNAME='sqlite' PACKAGE_VERSION='3.7.7' PACKAGE_STRING='sqlite 3.7.7' PACKAGE_BUGREPORT='' # Factoring default headers for most tests. ac_includes_default="\ #include <stdio.h> #ifdef HAVE_SYS_TYPES_H # include <sys/types.h> |
︙ | ︙ | |||
1481 1482 1483 1484 1485 1486 1487 | # # Report the --help message. # if test "$ac_init_help" = "long"; then # Omit some internal or obsolete options to make the list less imposing. # This message is too long to be a string in the A/UX 3.1 sh. cat <<_ACEOF | | | 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 | # # Report the --help message. # if test "$ac_init_help" = "long"; then # Omit some internal or obsolete options to make the list less imposing. # This message is too long to be a string in the A/UX 3.1 sh. cat <<_ACEOF \`configure' configures sqlite 3.7.7 to adapt to many kinds of systems. Usage: $0 [OPTION]... [VAR=VALUE]... To assign environment variables (e.g., CC, CFLAGS...), specify them as VAR=VALUE. See below for descriptions of some of the useful variables. Defaults for the options are specified in brackets. |
︙ | ︙ | |||
1546 1547 1548 1549 1550 1551 1552 | --build=BUILD configure for building on BUILD [guessed] --host=HOST cross-compile to build programs to run on HOST [BUILD] _ACEOF fi if test -n "$ac_init_help"; then case $ac_init_help in | | | 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 | --build=BUILD configure for building on BUILD [guessed] --host=HOST cross-compile to build programs to run on HOST [BUILD] _ACEOF fi if test -n "$ac_init_help"; then case $ac_init_help in short | recursive ) echo "Configuration of sqlite 3.7.7:";; esac cat <<\_ACEOF Optional Features: --disable-option-checking ignore unrecognized --enable/--with options --disable-FEATURE do not include FEATURE (same as --enable-FEATURE=no) --enable-FEATURE[=ARG] include FEATURE [ARG=yes] |
︙ | ︙ | |||
1662 1663 1664 1665 1666 1667 1668 | cd "$ac_pwd" || { ac_status=$?; break; } done fi test -n "$ac_init_help" && exit $ac_status if $ac_init_version; then cat <<\_ACEOF | | | | 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 | cd "$ac_pwd" || { ac_status=$?; break; } done fi test -n "$ac_init_help" && exit $ac_status if $ac_init_version; then cat <<\_ACEOF sqlite configure 3.7.7 generated by GNU Autoconf 2.62 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc. This configure script is free software; the Free Software Foundation gives unlimited permission to copy, distribute and modify it. _ACEOF exit fi cat >config.log <<_ACEOF This file contains any messages produced by compilers while running configure, to aid debugging if configure makes a mistake. It was created by sqlite $as_me 3.7.7, which was generated by GNU Autoconf 2.62. Invocation command line was $ $0 $@ _ACEOF exec 5>>config.log { |
︙ | ︙ | |||
13938 13939 13940 13941 13942 13943 13944 | exec 6>&1 # Save the log message, to keep $[0] and so on meaningful, and to # report actual input values of CONFIG_FILES etc. instead of their # values after options handling. ac_log=" | | | 13938 13939 13940 13941 13942 13943 13944 13945 13946 13947 13948 13949 13950 13951 13952 | exec 6>&1 # Save the log message, to keep $[0] and so on meaningful, and to # report actual input values of CONFIG_FILES etc. instead of their # values after options handling. ac_log=" This file was extended by sqlite $as_me 3.7.7, which was generated by GNU Autoconf 2.62. Invocation command line was CONFIG_FILES = $CONFIG_FILES CONFIG_HEADERS = $CONFIG_HEADERS CONFIG_LINKS = $CONFIG_LINKS CONFIG_COMMANDS = $CONFIG_COMMANDS $ $0 $@ |
︙ | ︙ | |||
13991 13992 13993 13994 13995 13996 13997 | $config_commands Report bugs to <bug-autoconf@gnu.org>." _ACEOF cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 ac_cs_version="\\ | | | 13991 13992 13993 13994 13995 13996 13997 13998 13999 14000 14001 14002 14003 14004 14005 | $config_commands Report bugs to <bug-autoconf@gnu.org>." _ACEOF cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 ac_cs_version="\\ sqlite config.status 3.7.7 configured by $0, generated by GNU Autoconf 2.62, with options \\"`$as_echo "$ac_configure_args" | sed 's/^ //; s/[\\""\`\$]/\\\\&/g'`\\" Copyright (C) 2008 Free Software Foundation, Inc. This config.status script is free software; the Free Software Foundation gives unlimited permission to copy, distribute and modify it." |
︙ | ︙ |
Changes to ext/fts3/fts3.c.
︙ | ︙ | |||
414 415 416 417 418 419 420 421 422 423 424 425 426 427 | ** to *pVal. */ static void fts3GetDeltaVarint(char **pp, sqlite3_int64 *pVal){ sqlite3_int64 iVal; *pp += sqlite3Fts3GetVarint(*pp, &iVal); *pVal += iVal; } /* ** As long as *pp has not reached its end (pEnd), then do the same ** as fts3GetDeltaVarint(): read a single varint and add it to *pVal. ** But if we have reached the end of the varint, just set *pp=0 and ** leave *pVal unchanged. */ | > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 | ** to *pVal. */ static void fts3GetDeltaVarint(char **pp, sqlite3_int64 *pVal){ sqlite3_int64 iVal; *pp += sqlite3Fts3GetVarint(*pp, &iVal); *pVal += iVal; } /* ** When this function is called, *pp points to the first byte following a ** varint that is part of a doclist (or position-list, or any other list ** of varints). This function moves *pp to point to the start of that varint, ** and decrements the value stored in *pVal by the varint value. ** ** Argument pStart points to the first byte of the doclist that the ** varint is part of. */ static void fts3GetReverseDeltaVarint( char **pp, char *pStart, sqlite3_int64 *pVal ){ sqlite3_int64 iVal; char *p = *pp; /* Pointer p now points at the first byte past the varint we are ** interested in. So, unless the doclist is corrupt, the 0x80 bit is ** clear on character p[-1]. */ for(p = (*pp)-2; p>=pStart && *p&0x80; p--); p++; *pp = p; sqlite3Fts3GetVarint(p, &iVal); *pVal -= iVal; } /* ** As long as *pp has not reached its end (pEnd), then do the same ** as fts3GetDeltaVarint(): read a single varint and add it to *pVal. ** But if we have reached the end of the varint, just set *pp=0 and ** leave *pVal unchanged. */ |
︙ | ︙ | |||
519 520 521 522 523 524 525 526 527 528 529 530 531 532 | */ static void fts3DeclareVtab(int *pRc, Fts3Table *p){ if( *pRc==SQLITE_OK ){ int i; /* Iterator variable */ int rc; /* Return code */ char *zSql; /* SQL statement passed to declare_vtab() */ char *zCols; /* List of user defined columns */ /* Create a list of user columns for the virtual table */ zCols = sqlite3_mprintf("%Q, ", p->azColumn[0]); for(i=1; zCols && i<p->nColumn; i++){ zCols = sqlite3_mprintf("%z%Q, ", zCols, p->azColumn[i]); } | > > | 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 | */ static void fts3DeclareVtab(int *pRc, Fts3Table *p){ if( *pRc==SQLITE_OK ){ int i; /* Iterator variable */ int rc; /* Return code */ char *zSql; /* SQL statement passed to declare_vtab() */ char *zCols; /* List of user defined columns */ sqlite3_vtab_config(p->db, SQLITE_VTAB_CONSTRAINT_SUPPORT, 1); /* Create a list of user columns for the virtual table */ zCols = sqlite3_mprintf("%Q, ", p->azColumn[0]); for(i=1; zCols && i<p->nColumn; i++){ zCols = sqlite3_mprintf("%z%Q, ", zCols, p->azColumn[i]); } |
︙ | ︙ | |||
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 | } } if( iCons>=0 ){ pInfo->aConstraintUsage[iCons].argvIndex = 1; pInfo->aConstraintUsage[iCons].omit = 1; } return SQLITE_OK; } /* ** Implementation of xOpen method. */ static int fts3OpenMethod(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCsr){ | > > > > > > > > > > > > > > > > | 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 | } } if( iCons>=0 ){ pInfo->aConstraintUsage[iCons].argvIndex = 1; pInfo->aConstraintUsage[iCons].omit = 1; } /* Regardless of the strategy selected, FTS can deliver rows in rowid (or ** docid) order. Both ascending and descending are possible. */ if( pInfo->nOrderBy==1 ){ struct sqlite3_index_orderby *pOrder = &pInfo->aOrderBy[0]; if( pOrder->iColumn<0 || pOrder->iColumn==p->nColumn+1 ){ if( pOrder->desc ){ pInfo->idxStr = "DESC"; }else{ pInfo->idxStr = "ASC"; } } pInfo->orderByConsumed = 1; } return SQLITE_OK; } /* ** Implementation of xOpen method. */ static int fts3OpenMethod(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCsr){ |
︙ | ︙ | |||
2992 2993 2994 2995 2996 2997 2998 | if( SQLITE_ROW!=sqlite3_step(pCsr->pStmt) ){ pCsr->isEof = 1; rc = sqlite3_reset(pCsr->pStmt); break; } pCsr->iPrevId = sqlite3_column_int64(pCsr->pStmt, 0); }else{ | > | | | | < | > > > > > > > > | 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 | if( SQLITE_ROW!=sqlite3_step(pCsr->pStmt) ){ pCsr->isEof = 1; rc = sqlite3_reset(pCsr->pStmt); break; } pCsr->iPrevId = sqlite3_column_int64(pCsr->pStmt, 0); }else{ if( pCsr->desc==0 ){ if( pCsr->pNextId>=&pCsr->aDoclist[pCsr->nDoclist] ){ pCsr->isEof = 1; break; } fts3GetDeltaVarint(&pCsr->pNextId, &pCsr->iPrevId); }else{ fts3GetReverseDeltaVarint(&pCsr->pNextId,pCsr->aDoclist,&pCsr->iPrevId); if( pCsr->pNextId<=pCsr->aDoclist ){ pCsr->isEof = 1; break; } } sqlite3_reset(pCsr->pStmt); pCsr->isRequireSeek = 1; pCsr->isMatchinfoNeeded = 1; } }while( SQLITE_OK==(rc = fts3EvalDeferred(pCsr, &res)) && res==0 ); return rc; } |
︙ | ︙ | |||
3030 3031 3032 3033 3034 3035 3036 | sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */ int idxNum, /* Strategy index */ const char *idxStr, /* Unused */ int nVal, /* Number of elements in apVal */ sqlite3_value **apVal /* Arguments for the indexing scheme */ ){ const char *azSql[] = { | | | | 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 | sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */ int idxNum, /* Strategy index */ const char *idxStr, /* Unused */ int nVal, /* Number of elements in apVal */ sqlite3_value **apVal /* Arguments for the indexing scheme */ ){ const char *azSql[] = { "SELECT %s FROM %Q.'%q_content' AS x WHERE docid = ?", /* non-full-scan */ "SELECT %s FROM %Q.'%q_content' AS x ORDER BY docid %s", /* full-scan */ }; int rc; /* Return code */ char *zSql; /* SQL statement used to access %_content */ Fts3Table *p = (Fts3Table *)pCursor->pVtab; Fts3Cursor *pCsr = (Fts3Cursor *)pCursor; UNUSED_PARAMETER(idxStr); |
︙ | ︙ | |||
3087 3088 3089 3090 3091 3092 3093 | /* Compile a SELECT statement for this cursor. For a full-table-scan, the ** statement loops through all rows of the %_content table. For a ** full-text query or docid lookup, the statement retrieves a single ** row by docid. */ zSql = (char *)azSql[idxNum==FTS3_FULLSCAN_SEARCH]; | | > > > > > > > > > > > > > > > > > | 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 | /* Compile a SELECT statement for this cursor. For a full-table-scan, the ** statement loops through all rows of the %_content table. For a ** full-text query or docid lookup, the statement retrieves a single ** row by docid. */ zSql = (char *)azSql[idxNum==FTS3_FULLSCAN_SEARCH]; zSql = sqlite3_mprintf( zSql, p->zReadExprlist, p->zDb, p->zName, (idxStr ? idxStr : "ASC") ); if( !zSql ){ rc = SQLITE_NOMEM; }else{ rc = sqlite3_prepare_v2(p->db, zSql, -1, &pCsr->pStmt, 0); sqlite3_free(zSql); } if( rc==SQLITE_OK && idxNum==FTS3_DOCID_SEARCH ){ rc = sqlite3_bind_value(pCsr->pStmt, 1, apVal[0]); } pCsr->eSearch = (i16)idxNum; assert( pCsr->desc==0 ); if( rc!=SQLITE_OK ) return rc; if( rc==SQLITE_OK && pCsr->nDoclist>0 && idxStr && idxStr[0]=='D' ){ sqlite3_int64 iDocid = 0; char *csr = pCsr->aDoclist; while( csr<&pCsr->aDoclist[pCsr->nDoclist] ){ fts3GetDeltaVarint(&csr, &iDocid); } pCsr->pNextId = csr; pCsr->iPrevId = iDocid; pCsr->desc = 1; pCsr->isRequireSeek = 1; pCsr->isMatchinfoNeeded = 1; pCsr->eEvalmode = FTS3_EVAL_NEXT; return SQLITE_OK; } return fts3NextMethod(pCursor); } /* ** This is the xEof method of the virtual table. SQLite calls this ** routine to find out if it has reached the end of a result set. */ |
︙ | ︙ | |||
3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 | assert( pCsr->eEvalmode==FTS3_EVAL_NEXT ); assert( pExpr->eType==FTSQUERY_PHRASE && pExpr->pPhrase ); pCsr->eEvalmode = FTS3_EVAL_MATCHINFO; rc = fts3EvalExpr(pCsr, pExpr, paDoclist, pnDoclist, 1); pCsr->eEvalmode = FTS3_EVAL_NEXT; return rc; } /* ** After ExprLoadDoclist() (see above) has been called, this function is ** used to iterate/search through the position lists that make up the doclist ** stored in pExpr->aDoclist. */ char *sqlite3Fts3FindPositions( Fts3Expr *pExpr, /* Access this expressions doclist */ sqlite3_int64 iDocid, /* Docid associated with requested pos-list */ int iCol /* Column of requested pos-list */ ){ assert( pExpr->isLoaded ); if( pExpr->aDoclist ){ char *pEnd = &pExpr->aDoclist[pExpr->nDoclist]; char *pCsr; if( pExpr->pCurrent==0 ){ | > > > > > > > > > > > > > > > > > > > > > | | > > > > > > > > | > | > > | > > > > | 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 | assert( pCsr->eEvalmode==FTS3_EVAL_NEXT ); assert( pExpr->eType==FTSQUERY_PHRASE && pExpr->pPhrase ); pCsr->eEvalmode = FTS3_EVAL_MATCHINFO; rc = fts3EvalExpr(pCsr, pExpr, paDoclist, pnDoclist, 1); pCsr->eEvalmode = FTS3_EVAL_NEXT; return rc; } /* ** When called, *ppPoslist must point to the byte immediately following the ** end of a position-list. i.e. ( (*ppPoslist)[-1]==POS_END ). This function ** moves *ppPoslist so that it instead points to the first byte of the ** same position list. */ static void fts3ReversePoslist(char *pStart, char **ppPoslist){ char *p = &(*ppPoslist)[-3]; char c = p[1]; while( p>pStart && (*p & 0x80) | c ){ c = *p--; } if( p>pStart ){ p = &p[2]; } while( *p++&0x80 ); *ppPoslist = p; } /* ** After ExprLoadDoclist() (see above) has been called, this function is ** used to iterate/search through the position lists that make up the doclist ** stored in pExpr->aDoclist. */ char *sqlite3Fts3FindPositions( Fts3Cursor *pCursor, /* Associate FTS3 cursor */ Fts3Expr *pExpr, /* Access this expressions doclist */ sqlite3_int64 iDocid, /* Docid associated with requested pos-list */ int iCol /* Column of requested pos-list */ ){ assert( pExpr->isLoaded ); if( pExpr->aDoclist ){ char *pEnd = &pExpr->aDoclist[pExpr->nDoclist]; char *pCsr; if( pExpr->pCurrent==0 ){ if( pCursor->desc==0 ){ pExpr->pCurrent = pExpr->aDoclist; pExpr->iCurrent = 0; fts3GetDeltaVarint(&pExpr->pCurrent, &pExpr->iCurrent); }else{ pCsr = pExpr->aDoclist; while( pCsr<pEnd ){ fts3GetDeltaVarint(&pCsr, &pExpr->iCurrent); fts3PoslistCopy(0, &pCsr); } fts3ReversePoslist(pExpr->aDoclist, &pCsr); pExpr->pCurrent = pCsr; } } pCsr = pExpr->pCurrent; assert( pCsr ); while( (pCursor->desc==0 && pCsr<pEnd) || (pCursor->desc && pCsr>pExpr->aDoclist) ){ if( pCursor->desc==0 && pExpr->iCurrent<iDocid ){ fts3PoslistCopy(0, &pCsr); if( pCsr<pEnd ){ fts3GetDeltaVarint(&pCsr, &pExpr->iCurrent); } pExpr->pCurrent = pCsr; }else if( pCursor->desc && pExpr->iCurrent>iDocid ){ fts3GetReverseDeltaVarint(&pCsr, pExpr->aDoclist, &pExpr->iCurrent); fts3ReversePoslist(pExpr->aDoclist, &pCsr); pExpr->pCurrent = pCsr; }else{ if( pExpr->iCurrent==iDocid ){ int iThis = 0; if( iCol<0 ){ /* If iCol is negative, return a pointer to the start of the ** position-list (instead of a pointer to the start of a list |
︙ | ︙ | |||
3537 3538 3539 3540 3541 3542 3543 3544 3545 | ); fts3DbExec(&rc, db, "ALTER TABLE %Q.'%q_segdir' RENAME TO '%q_segdir';", p->zDb, p->zName, zName ); return rc; } static const sqlite3_module fts3Module = { | > > > > > > > > > > > | > > > | 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 | ); fts3DbExec(&rc, db, "ALTER TABLE %Q.'%q_segdir' RENAME TO '%q_segdir';", p->zDb, p->zName, zName ); return rc; } static int fts3SavepointMethod(sqlite3_vtab *pVtab, int iSavepoint){ return sqlite3Fts3PendingTermsFlush((Fts3Table *)pVtab); } static int fts3ReleaseMethod(sqlite3_vtab *pVtab, int iSavepoint){ return SQLITE_OK; } static int fts3RollbackToMethod(sqlite3_vtab *pVtab, int iSavepoint){ sqlite3Fts3PendingTermsClear((Fts3Table *)pVtab); return SQLITE_OK; } static const sqlite3_module fts3Module = { /* iVersion */ 1, /* xCreate */ fts3CreateMethod, /* xConnect */ fts3ConnectMethod, /* xBestIndex */ fts3BestIndexMethod, /* xDisconnect */ fts3DisconnectMethod, /* xDestroy */ fts3DestroyMethod, /* xOpen */ fts3OpenMethod, /* xClose */ fts3CloseMethod, /* xFilter */ fts3FilterMethod, /* xNext */ fts3NextMethod, /* xEof */ fts3EofMethod, /* xColumn */ fts3ColumnMethod, /* xRowid */ fts3RowidMethod, /* xUpdate */ fts3UpdateMethod, /* xBegin */ fts3BeginMethod, /* xSync */ fts3SyncMethod, /* xCommit */ fts3CommitMethod, /* xRollback */ fts3RollbackMethod, /* xFindFunction */ fts3FindFunctionMethod, /* xRename */ fts3RenameMethod, /* xSavepoint */ fts3SavepointMethod, /* xRelease */ fts3ReleaseMethod, /* xRollbackTo */ fts3RollbackToMethod, }; /* ** This function is registered as the module destructor (called when an ** FTS3 enabled database connection is closed). It frees the memory ** allocated for the tokenizer hash table. */ |
︙ | ︙ | |||
3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 | const sqlite3_tokenizer_module *pSimple = 0; const sqlite3_tokenizer_module *pPorter = 0; #ifdef SQLITE_ENABLE_ICU const sqlite3_tokenizer_module *pIcu = 0; sqlite3Fts3IcuTokenizerModule(&pIcu); #endif rc = sqlite3Fts3InitAux(db); if( rc!=SQLITE_OK ) return rc; sqlite3Fts3SimpleTokenizerModule(&pSimple); sqlite3Fts3PorterTokenizerModule(&pPorter); | > > > > > | 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 | const sqlite3_tokenizer_module *pSimple = 0; const sqlite3_tokenizer_module *pPorter = 0; #ifdef SQLITE_ENABLE_ICU const sqlite3_tokenizer_module *pIcu = 0; sqlite3Fts3IcuTokenizerModule(&pIcu); #endif #ifdef SQLITE_TEST rc = sqlite3Fts3InitTerm(db); if( rc!=SQLITE_OK ) return rc; #endif rc = sqlite3Fts3InitAux(db); if( rc!=SQLITE_OK ) return rc; sqlite3Fts3SimpleTokenizerModule(&pSimple); sqlite3Fts3PorterTokenizerModule(&pPorter); |
︙ | ︙ |
Changes to ext/fts3/fts3Int.h.
︙ | ︙ | |||
167 168 169 170 171 172 173 174 175 176 177 178 179 180 | Fts3Expr *pExpr; /* Parsed MATCH query string */ int nPhrase; /* Number of matchable phrases in query */ Fts3DeferredToken *pDeferred; /* Deferred search tokens, if any */ sqlite3_int64 iPrevId; /* Previous id read from aDoclist */ char *pNextId; /* Pointer into the body of aDoclist */ char *aDoclist; /* List of docids for full-text queries */ int nDoclist; /* Size of buffer at aDoclist */ int eEvalmode; /* An FTS3_EVAL_XX constant */ int nRowAvg; /* Average size of database rows, in pages */ int isMatchinfoNeeded; /* True when aMatchinfo[] needs filling in */ u32 *aMatchinfo; /* Information about most recent match */ int nMatchinfo; /* Number of elements in aMatchinfo[] */ char *zMatchinfo; /* Matchinfo specification */ | > | 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 | Fts3Expr *pExpr; /* Parsed MATCH query string */ int nPhrase; /* Number of matchable phrases in query */ Fts3DeferredToken *pDeferred; /* Deferred search tokens, if any */ sqlite3_int64 iPrevId; /* Previous id read from aDoclist */ char *pNextId; /* Pointer into the body of aDoclist */ char *aDoclist; /* List of docids for full-text queries */ int nDoclist; /* Size of buffer at aDoclist */ int desc; /* True to sort in descending order */ int eEvalmode; /* An FTS3_EVAL_XX constant */ int nRowAvg; /* Average size of database rows, in pages */ int isMatchinfoNeeded; /* True when aMatchinfo[] needs filling in */ u32 *aMatchinfo; /* Information about most recent match */ int nMatchinfo; /* Number of elements in aMatchinfo[] */ char *zMatchinfo; /* Matchinfo specification */ |
︙ | ︙ | |||
349 350 351 352 353 354 355 | /* fts3.c */ int sqlite3Fts3PutVarint(char *, sqlite3_int64); int sqlite3Fts3GetVarint(const char *, sqlite_int64 *); int sqlite3Fts3GetVarint32(const char *, int *); int sqlite3Fts3VarintLen(sqlite3_uint64); void sqlite3Fts3Dequote(char *); | | | 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 | /* fts3.c */ int sqlite3Fts3PutVarint(char *, sqlite3_int64); int sqlite3Fts3GetVarint(const char *, sqlite_int64 *); int sqlite3Fts3GetVarint32(const char *, int *); int sqlite3Fts3VarintLen(sqlite3_uint64); void sqlite3Fts3Dequote(char *); char *sqlite3Fts3FindPositions(Fts3Cursor *, Fts3Expr *, sqlite3_int64, int); int sqlite3Fts3ExprLoadDoclist(Fts3Cursor *, Fts3Expr *); int sqlite3Fts3ExprLoadFtDoclist(Fts3Cursor *, Fts3Expr *, char **, int *); int sqlite3Fts3ExprNearTrim(Fts3Expr *, Fts3Expr *, int); /* fts3_tokenizer.c */ const char *sqlite3Fts3NextToken(const char *, int *); int sqlite3Fts3InitHashTable(sqlite3 *, Fts3Hash *, const char *); |
︙ | ︙ |
Changes to ext/fts3/fts3_snippet.c.
︙ | ︙ | |||
411 412 413 414 415 416 417 | static int fts3SnippetFindPositions(Fts3Expr *pExpr, int iPhrase, void *ctx){ SnippetIter *p = (SnippetIter *)ctx; SnippetPhrase *pPhrase = &p->aPhrase[iPhrase]; char *pCsr; pPhrase->nToken = pExpr->pPhrase->nToken; | | | 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 | static int fts3SnippetFindPositions(Fts3Expr *pExpr, int iPhrase, void *ctx){ SnippetIter *p = (SnippetIter *)ctx; SnippetPhrase *pPhrase = &p->aPhrase[iPhrase]; char *pCsr; pPhrase->nToken = pExpr->pPhrase->nToken; pCsr = sqlite3Fts3FindPositions(p->pCsr, pExpr, p->pCsr->iPrevId, p->iCol); if( pCsr ){ int iFirst = 0; pPhrase->pList = pCsr; fts3GetDeltaPosition(&pCsr, &iFirst); pPhrase->pHead = pCsr; pPhrase->pTail = pCsr; pPhrase->iHead = iFirst; |
︙ | ︙ | |||
884 885 886 887 888 889 890 | int i; for(i=0; i<p->nCol; i++) p->aMatchinfo[iStart+i*3] = 0; if( pExpr->aDoclist ){ char *pCsr; | | | 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 | int i; for(i=0; i<p->nCol; i++) p->aMatchinfo[iStart+i*3] = 0; if( pExpr->aDoclist ){ char *pCsr; pCsr = sqlite3Fts3FindPositions(p->pCursor, pExpr, p->pCursor->iPrevId, -1); if( pCsr ){ fts3LoadColumnlistCounts(&pCsr, &p->aMatchinfo[iStart], 0); } } return SQLITE_OK; } |
︙ | ︙ | |||
1051 1052 1053 1054 1055 1056 1057 | if( !aIter ) return SQLITE_NOMEM; memset(aIter, 0, sizeof(LcsIterator) * pCsr->nPhrase); (void)fts3ExprIterate(pCsr->pExpr, fts3MatchinfoLcsCb, (void*)aIter); for(i=0; i<pInfo->nPhrase; i++){ LcsIterator *pIter = &aIter[i]; nToken -= pIter->pExpr->pPhrase->nToken; pIter->iPosOffset = nToken; | | | 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 | if( !aIter ) return SQLITE_NOMEM; memset(aIter, 0, sizeof(LcsIterator) * pCsr->nPhrase); (void)fts3ExprIterate(pCsr->pExpr, fts3MatchinfoLcsCb, (void*)aIter); for(i=0; i<pInfo->nPhrase; i++){ LcsIterator *pIter = &aIter[i]; nToken -= pIter->pExpr->pPhrase->nToken; pIter->iPosOffset = nToken; pIter->pRead = sqlite3Fts3FindPositions(pCsr,pIter->pExpr,pCsr->iPrevId,-1); if( pIter->pRead ){ pIter->iPos = pIter->iPosOffset; fts3LcsIteratorAdvance(&aIter[i]); }else{ pIter->iCol = LCS_ITERATOR_FINISHED; } } |
︙ | ︙ | |||
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 | struct TermOffset { char *pList; /* Position-list */ int iPos; /* Position just read from pList */ int iOff; /* Offset of this term from read positions */ }; struct TermOffsetCtx { int iCol; /* Column of table to populate aTerm for */ int iTerm; sqlite3_int64 iDocid; TermOffset *aTerm; }; /* ** This function is an fts3ExprIterate() callback used by sqlite3Fts3Offsets(). */ static int fts3ExprTermOffsetInit(Fts3Expr *pExpr, int iPhrase, void *ctx){ TermOffsetCtx *p = (TermOffsetCtx *)ctx; int nTerm; /* Number of tokens in phrase */ int iTerm; /* For looping through nTerm phrase terms */ char *pList; /* Pointer to position list for phrase */ int iPos = 0; /* First position in position-list */ UNUSED_PARAMETER(iPhrase); | > | | 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 | struct TermOffset { char *pList; /* Position-list */ int iPos; /* Position just read from pList */ int iOff; /* Offset of this term from read positions */ }; struct TermOffsetCtx { Fts3Cursor *pCsr; int iCol; /* Column of table to populate aTerm for */ int iTerm; sqlite3_int64 iDocid; TermOffset *aTerm; }; /* ** This function is an fts3ExprIterate() callback used by sqlite3Fts3Offsets(). */ static int fts3ExprTermOffsetInit(Fts3Expr *pExpr, int iPhrase, void *ctx){ TermOffsetCtx *p = (TermOffsetCtx *)ctx; int nTerm; /* Number of tokens in phrase */ int iTerm; /* For looping through nTerm phrase terms */ char *pList; /* Pointer to position list for phrase */ int iPos = 0; /* First position in position-list */ UNUSED_PARAMETER(iPhrase); pList = sqlite3Fts3FindPositions(p->pCsr, pExpr, p->iDocid, p->iCol); nTerm = pExpr->pPhrase->nToken; if( pList ){ fts3GetDeltaPosition(&pList, &iPos); assert( iPos>=0 ); } for(iTerm=0; iTerm<nTerm; iTerm++){ |
︙ | ︙ | |||
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 | /* Allocate the array of TermOffset iterators. */ sCtx.aTerm = (TermOffset *)sqlite3_malloc(sizeof(TermOffset)*nToken); if( 0==sCtx.aTerm ){ rc = SQLITE_NOMEM; goto offsets_out; } sCtx.iDocid = pCsr->iPrevId; /* Loop through the table columns, appending offset information to ** string-buffer res for each column. */ for(iCol=0; iCol<pTab->nColumn; iCol++){ sqlite3_tokenizer_cursor *pC; /* Tokenizer cursor */ int iStart; | > | 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 | /* Allocate the array of TermOffset iterators. */ sCtx.aTerm = (TermOffset *)sqlite3_malloc(sizeof(TermOffset)*nToken); if( 0==sCtx.aTerm ){ rc = SQLITE_NOMEM; goto offsets_out; } sCtx.iDocid = pCsr->iPrevId; sCtx.pCsr = pCsr; /* Loop through the table columns, appending offset information to ** string-buffer res for each column. */ for(iCol=0; iCol<pTab->nColumn; iCol++){ sqlite3_tokenizer_cursor *pC; /* Tokenizer cursor */ int iStart; |
︙ | ︙ |
Added ext/fts3/fts3_term.c.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 | /* ** 2011 Jan 27 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** This file is not part of the production FTS code. It is only used for ** testing. It contains a virtual table implementation that provides direct ** access to the full-text index of an FTS table. */ #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) #ifdef SQLITE_TEST #include "fts3Int.h" #include <string.h> #include <assert.h> typedef struct Fts3termTable Fts3termTable; typedef struct Fts3termCursor Fts3termCursor; struct Fts3termTable { sqlite3_vtab base; /* Base class used by SQLite core */ Fts3Table *pFts3Tab; }; struct Fts3termCursor { sqlite3_vtab_cursor base; /* Base class used by SQLite core */ Fts3SegReaderCursor csr; /* Must be right after "base" */ Fts3SegFilter filter; int isEof; /* True if cursor is at EOF */ char *pNext; sqlite3_int64 iRowid; /* Current 'rowid' value */ sqlite3_int64 iDocid; /* Current 'docid' value */ int iCol; /* Current 'col' value */ int iPos; /* Current 'pos' value */ }; /* ** Schema of the terms table. */ #define FTS3_TERMS_SCHEMA "CREATE TABLE x(term, docid, col, pos)" /* ** This function does all the work for both the xConnect and xCreate methods. ** These tables have no persistent representation of their own, so xConnect ** and xCreate are identical operations. */ static int fts3termConnectMethod( sqlite3 *db, /* Database connection */ void *pUnused, /* Unused */ int argc, /* Number of elements in argv array */ const char * const *argv, /* xCreate/xConnect argument array */ sqlite3_vtab **ppVtab, /* OUT: New sqlite3_vtab object */ char **pzErr /* OUT: sqlite3_malloc'd error message */ ){ char const *zDb; /* Name of database (e.g. "main") */ char const *zFts3; /* Name of fts3 table */ int nDb; /* Result of strlen(zDb) */ int nFts3; /* Result of strlen(zFts3) */ int nByte; /* Bytes of space to allocate here */ int rc; /* value returned by declare_vtab() */ Fts3termTable *p; /* Virtual table object to return */ UNUSED_PARAMETER(pUnused); /* The user should specify a single argument - the name of an fts3 table. */ if( argc!=4 ){ *pzErr = sqlite3_mprintf( "wrong number of arguments to fts4term constructor" ); return SQLITE_ERROR; } zDb = argv[1]; nDb = strlen(zDb); zFts3 = argv[3]; nFts3 = strlen(zFts3); rc = sqlite3_declare_vtab(db, FTS3_TERMS_SCHEMA); if( rc!=SQLITE_OK ) return rc; nByte = sizeof(Fts3termTable) + sizeof(Fts3Table) + nDb + nFts3 + 2; p = (Fts3termTable *)sqlite3_malloc(nByte); if( !p ) return SQLITE_NOMEM; memset(p, 0, nByte); p->pFts3Tab = (Fts3Table *)&p[1]; p->pFts3Tab->zDb = (char *)&p->pFts3Tab[1]; p->pFts3Tab->zName = &p->pFts3Tab->zDb[nDb+1]; p->pFts3Tab->db = db; memcpy((char *)p->pFts3Tab->zDb, zDb, nDb); memcpy((char *)p->pFts3Tab->zName, zFts3, nFts3); sqlite3Fts3Dequote((char *)p->pFts3Tab->zName); *ppVtab = (sqlite3_vtab *)p; return SQLITE_OK; } /* ** This function does the work for both the xDisconnect and xDestroy methods. ** These tables have no persistent representation of their own, so xDisconnect ** and xDestroy are identical operations. */ static int fts3termDisconnectMethod(sqlite3_vtab *pVtab){ Fts3termTable *p = (Fts3termTable *)pVtab; Fts3Table *pFts3 = p->pFts3Tab; int i; /* Free any prepared statements held */ for(i=0; i<SizeofArray(pFts3->aStmt); i++){ sqlite3_finalize(pFts3->aStmt[i]); } sqlite3_free(pFts3->zSegmentsTbl); sqlite3_free(p); return SQLITE_OK; } #define FTS4AUX_EQ_CONSTRAINT 1 #define FTS4AUX_GE_CONSTRAINT 2 #define FTS4AUX_LE_CONSTRAINT 4 /* ** xBestIndex - Analyze a WHERE and ORDER BY clause. */ static int fts3termBestIndexMethod( sqlite3_vtab *pVTab, sqlite3_index_info *pInfo ){ UNUSED_PARAMETER(pVTab); /* This vtab naturally does "ORDER BY term, docid, col, pos". */ if( pInfo->nOrderBy ){ int i; for(i=0; i<pInfo->nOrderBy; i++){ if( pInfo->aOrderBy[i].iColumn!=i || pInfo->aOrderBy[i].desc ) break; } if( i==pInfo->nOrderBy ){ pInfo->orderByConsumed = 1; } } return SQLITE_OK; } /* ** xOpen - Open a cursor. */ static int fts3termOpenMethod(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCsr){ Fts3termCursor *pCsr; /* Pointer to cursor object to return */ UNUSED_PARAMETER(pVTab); pCsr = (Fts3termCursor *)sqlite3_malloc(sizeof(Fts3termCursor)); if( !pCsr ) return SQLITE_NOMEM; memset(pCsr, 0, sizeof(Fts3termCursor)); *ppCsr = (sqlite3_vtab_cursor *)pCsr; return SQLITE_OK; } /* ** xClose - Close a cursor. */ static int fts3termCloseMethod(sqlite3_vtab_cursor *pCursor){ Fts3Table *pFts3 = ((Fts3termTable *)pCursor->pVtab)->pFts3Tab; Fts3termCursor *pCsr = (Fts3termCursor *)pCursor; sqlite3Fts3SegmentsClose(pFts3); sqlite3Fts3SegReaderFinish(&pCsr->csr); sqlite3_free(pCsr); return SQLITE_OK; } /* ** xNext - Advance the cursor to the next row, if any. */ static int fts3termNextMethod(sqlite3_vtab_cursor *pCursor){ Fts3termCursor *pCsr = (Fts3termCursor *)pCursor; Fts3Table *pFts3 = ((Fts3termTable *)pCursor->pVtab)->pFts3Tab; int rc; sqlite3_int64 v; /* Increment our pretend rowid value. */ pCsr->iRowid++; /* Advance to the next term in the full-text index. */ if( pCsr->csr.aDoclist==0 || pCsr->pNext>=&pCsr->csr.aDoclist[pCsr->csr.nDoclist-1] ){ rc = sqlite3Fts3SegReaderStep(pFts3, &pCsr->csr); if( rc!=SQLITE_ROW ){ pCsr->isEof = 1; return rc; } pCsr->iCol = 0; pCsr->iPos = 0; pCsr->iDocid = 0; pCsr->pNext = pCsr->csr.aDoclist; /* Read docid */ pCsr->pNext += sqlite3Fts3GetVarint(pCsr->pNext, &pCsr->iDocid); } pCsr->pNext += sqlite3Fts3GetVarint(pCsr->pNext, &v); if( v==0 ){ pCsr->pNext += sqlite3Fts3GetVarint(pCsr->pNext, &v); pCsr->iDocid += v; pCsr->pNext += sqlite3Fts3GetVarint(pCsr->pNext, &v); pCsr->iCol = 0; pCsr->iPos = 0; } if( v==1 ){ pCsr->pNext += sqlite3Fts3GetVarint(pCsr->pNext, &v); pCsr->iCol += v; pCsr->iPos = 0; pCsr->pNext += sqlite3Fts3GetVarint(pCsr->pNext, &v); } pCsr->iPos += (v - 2); return SQLITE_OK; } /* ** xFilter - Initialize a cursor to point at the start of its data. */ static int fts3termFilterMethod( sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */ int idxNum, /* Strategy index */ const char *idxStr, /* Unused */ int nVal, /* Number of elements in apVal */ sqlite3_value **apVal /* Arguments for the indexing scheme */ ){ Fts3termCursor *pCsr = (Fts3termCursor *)pCursor; Fts3Table *pFts3 = ((Fts3termTable *)pCursor->pVtab)->pFts3Tab; int rc; UNUSED_PARAMETER(nVal); UNUSED_PARAMETER(idxNum); UNUSED_PARAMETER(idxStr); UNUSED_PARAMETER(apVal); assert( idxStr==0 && idxNum==0 ); /* In case this cursor is being reused, close and zero it. */ testcase(pCsr->filter.zTerm); sqlite3Fts3SegReaderFinish(&pCsr->csr); memset(&pCsr->csr, 0, ((u8*)&pCsr[1]) - (u8*)&pCsr->csr); pCsr->filter.flags = FTS3_SEGMENT_REQUIRE_POS|FTS3_SEGMENT_IGNORE_EMPTY; pCsr->filter.flags |= FTS3_SEGMENT_SCAN; rc = sqlite3Fts3SegReaderCursor(pFts3, FTS3_SEGCURSOR_ALL, pCsr->filter.zTerm, pCsr->filter.nTerm, 0, 1, &pCsr->csr ); if( rc==SQLITE_OK ){ rc = sqlite3Fts3SegReaderStart(pFts3, &pCsr->csr, &pCsr->filter); } if( rc==SQLITE_OK ){ rc = fts3termNextMethod(pCursor); } return rc; } /* ** xEof - Return true if the cursor is at EOF, or false otherwise. */ static int fts3termEofMethod(sqlite3_vtab_cursor *pCursor){ Fts3termCursor *pCsr = (Fts3termCursor *)pCursor; return pCsr->isEof; } /* ** xColumn - Return a column value. */ static int fts3termColumnMethod( sqlite3_vtab_cursor *pCursor, /* Cursor to retrieve value from */ sqlite3_context *pCtx, /* Context for sqlite3_result_xxx() calls */ int iCol /* Index of column to read value from */ ){ Fts3termCursor *p = (Fts3termCursor *)pCursor; assert( iCol>=0 && iCol<=3 ); switch( iCol ){ case 0: sqlite3_result_text(pCtx, p->csr.zTerm, p->csr.nTerm, SQLITE_TRANSIENT); break; case 1: sqlite3_result_int64(pCtx, p->iDocid); break; case 2: sqlite3_result_int64(pCtx, p->iCol); break; default: sqlite3_result_int64(pCtx, p->iPos); break; } return SQLITE_OK; } /* ** xRowid - Return the current rowid for the cursor. */ static int fts3termRowidMethod( sqlite3_vtab_cursor *pCursor, /* Cursor to retrieve value from */ sqlite_int64 *pRowid /* OUT: Rowid value */ ){ Fts3termCursor *pCsr = (Fts3termCursor *)pCursor; *pRowid = pCsr->iRowid; return SQLITE_OK; } /* ** Register the fts3term module with database connection db. Return SQLITE_OK ** if successful or an error code if sqlite3_create_module() fails. */ int sqlite3Fts3InitTerm(sqlite3 *db){ static const sqlite3_module fts3term_module = { 0, /* iVersion */ fts3termConnectMethod, /* xCreate */ fts3termConnectMethod, /* xConnect */ fts3termBestIndexMethod, /* xBestIndex */ fts3termDisconnectMethod, /* xDisconnect */ fts3termDisconnectMethod, /* xDestroy */ fts3termOpenMethod, /* xOpen */ fts3termCloseMethod, /* xClose */ fts3termFilterMethod, /* xFilter */ fts3termNextMethod, /* xNext */ fts3termEofMethod, /* xEof */ fts3termColumnMethod, /* xColumn */ fts3termRowidMethod, /* xRowid */ 0, /* xUpdate */ 0, /* xBegin */ 0, /* xSync */ 0, /* xCommit */ 0, /* xRollback */ 0, /* xFindFunction */ 0 /* xRename */ }; int rc; /* Return code */ rc = sqlite3_create_module(db, "fts4term", &fts3term_module, 0); return rc; } #endif #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */ |
Changes to ext/fts3/fts3_write.c.
︙ | ︙ | |||
537 538 539 540 541 542 543 544 545 546 547 548 549 550 | sqlite3_tokenizer *pTokenizer = p->pTokenizer; sqlite3_tokenizer_module const *pModule = pTokenizer->pModule; sqlite3_tokenizer_cursor *pCsr; int (*xNext)(sqlite3_tokenizer_cursor *pCursor, const char**,int*,int*,int*,int*); assert( pTokenizer && pModule ); rc = pModule->xOpen(pTokenizer, zText, -1, &pCsr); if( rc!=SQLITE_OK ){ return rc; } pCsr->pTokenizer = pTokenizer; | > > > > > > > > | 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 | sqlite3_tokenizer *pTokenizer = p->pTokenizer; sqlite3_tokenizer_module const *pModule = pTokenizer->pModule; sqlite3_tokenizer_cursor *pCsr; int (*xNext)(sqlite3_tokenizer_cursor *pCursor, const char**,int*,int*,int*,int*); assert( pTokenizer && pModule ); /* If the user has inserted a NULL value, this function may be called with ** zText==0. In this case, add zero token entries to the hash table and ** return early. */ if( zText==0 ){ *pnWord = 0; return SQLITE_OK; } rc = pModule->xOpen(pTokenizer, zText, -1, &pCsr); if( rc!=SQLITE_OK ){ return rc; } pCsr->pTokenizer = pTokenizer; |
︙ | ︙ | |||
628 629 630 631 632 633 634 | ** Argument apVal is the same as the similarly named argument passed to ** fts3InsertData(). Parameter iDocid is the docid of the new row. */ static int fts3InsertTerms(Fts3Table *p, sqlite3_value **apVal, u32 *aSz){ int i; /* Iterator variable */ for(i=2; i<p->nColumn+2; i++){ const char *zText = (const char *)sqlite3_value_text(apVal[i]); | < | | | < | 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 | ** Argument apVal is the same as the similarly named argument passed to ** fts3InsertData(). Parameter iDocid is the docid of the new row. */ static int fts3InsertTerms(Fts3Table *p, sqlite3_value **apVal, u32 *aSz){ int i; /* Iterator variable */ for(i=2; i<p->nColumn+2; i++){ const char *zText = (const char *)sqlite3_value_text(apVal[i]); int rc = fts3PendingTermsAdd(p, zText, i-2, &aSz[i-2]); if( rc!=SQLITE_OK ){ return rc; } aSz[p->nColumn] += sqlite3_value_bytes(apVal[i]); } return SQLITE_OK; } /* |
︙ | ︙ | |||
737 738 739 740 741 742 743 | ** The first element in the apVal[] array is assumed to contain the docid ** (an integer) of a row about to be deleted. Remove all terms from the ** full-text index. */ static void fts3DeleteTerms( int *pRC, /* Result code */ Fts3Table *p, /* The FTS table to delete from */ | | | | 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 | ** The first element in the apVal[] array is assumed to contain the docid ** (an integer) of a row about to be deleted. Remove all terms from the ** full-text index. */ static void fts3DeleteTerms( int *pRC, /* Result code */ Fts3Table *p, /* The FTS table to delete from */ sqlite3_value *pRowid, /* The docid to be deleted */ u32 *aSz /* Sizes of deleted document written here */ ){ int rc; sqlite3_stmt *pSelect; if( *pRC ) return; rc = fts3SqlStmt(p, SQL_SELECT_CONTENT_BY_ROWID, &pSelect, &pRowid); if( rc==SQLITE_OK ){ if( SQLITE_ROW==sqlite3_step(pSelect) ){ int i; for(i=1; i<=p->nColumn; i++){ const char *zText = (const char *)sqlite3_column_text(pSelect, i); rc = fts3PendingTermsAdd(p, zText, -1, &aSz[i-1]); if( rc!=SQLITE_OK ){ |
︙ | ︙ | |||
1884 1885 1886 1887 1888 1889 1890 | } } /* ** The first value in the apVal[] array is assumed to contain an integer. ** This function tests if there exist any documents with docid values that ** are different from that integer. i.e. if deleting the document with docid | | | | | | 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 | } } /* ** The first value in the apVal[] array is assumed to contain an integer. ** This function tests if there exist any documents with docid values that ** are different from that integer. i.e. if deleting the document with docid ** pRowid would mean the FTS3 table were empty. ** ** If successful, *pisEmpty is set to true if the table is empty except for ** document pRowid, or false otherwise, and SQLITE_OK is returned. If an ** error occurs, an SQLite error code is returned. */ static int fts3IsEmpty(Fts3Table *p, sqlite3_value *pRowid, int *pisEmpty){ sqlite3_stmt *pStmt; int rc; rc = fts3SqlStmt(p, SQL_IS_EMPTY, &pStmt, &pRowid); if( rc==SQLITE_OK ){ if( SQLITE_ROW==sqlite3_step(pStmt) ){ *pisEmpty = sqlite3_column_int(pStmt, 0); } rc = sqlite3_reset(pStmt); } return rc; |
︙ | ︙ | |||
2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 | assert( pToken->pDeferred==0 ); pToken->pDeferred = pDeferred; return SQLITE_OK; } /* ** This function does the work for the xUpdate method of FTS3 virtual ** tables. */ int sqlite3Fts3UpdateMethod( sqlite3_vtab *pVtab, /* FTS3 vtab object */ int nArg, /* Size of argument array */ sqlite3_value **apVal, /* Array of arguments */ sqlite_int64 *pRowid /* OUT: The affected (or effected) rowid */ ){ Fts3Table *p = (Fts3Table *)pVtab; int rc = SQLITE_OK; /* Return Code */ int isRemove = 0; /* True for an UPDATE or DELETE */ sqlite3_int64 iRemove = 0; /* Rowid removed by UPDATE or DELETE */ u32 *aSzIns; /* Sizes of inserted documents */ u32 *aSzDel; /* Sizes of deleted documents */ int nChng = 0; /* Net change in number of documents */ assert( p->pSegments==0 ); /* Allocate space to hold the change in document sizes */ aSzIns = sqlite3_malloc( sizeof(aSzIns[0])*(p->nColumn+1)*2 ); if( aSzIns==0 ) return SQLITE_NOMEM; aSzDel = &aSzIns[p->nColumn+1]; memset(aSzIns, 0, sizeof(aSzIns[0])*(p->nColumn+1)*2); | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > > > > > > > > > > > | | > | > | > | < > > > | < > | < < < > > > > > > > > > > > | | > | < | < | < | | | | > > > > > > > > > | > > | 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 | assert( pToken->pDeferred==0 ); pToken->pDeferred = pDeferred; return SQLITE_OK; } /* ** SQLite value pRowid contains the rowid of a row that may or may not be ** present in the FTS3 table. If it is, delete it and adjust the contents ** of subsiduary data structures accordingly. */ static int fts3DeleteByRowid( Fts3Table *p, sqlite3_value *pRowid, int *pnDoc, u32 *aSzDel ){ int isEmpty = 0; int rc = fts3IsEmpty(p, pRowid, &isEmpty); if( rc==SQLITE_OK ){ if( isEmpty ){ /* Deleting this row means the whole table is empty. In this case ** delete the contents of all three tables and throw away any ** data in the pendingTerms hash table. */ rc = fts3DeleteAll(p); *pnDoc = *pnDoc - 1; }else{ sqlite3_int64 iRemove = sqlite3_value_int64(pRowid); rc = fts3PendingTermsDocid(p, iRemove); fts3DeleteTerms(&rc, p, pRowid, aSzDel); fts3SqlExec(&rc, p, SQL_DELETE_CONTENT, &pRowid); if( sqlite3_changes(p->db) ) *pnDoc = *pnDoc - 1; if( p->bHasDocsize ){ fts3SqlExec(&rc, p, SQL_DELETE_DOCSIZE, &pRowid); } } } return rc; } /* ** This function does the work for the xUpdate method of FTS3 virtual ** tables. */ int sqlite3Fts3UpdateMethod( sqlite3_vtab *pVtab, /* FTS3 vtab object */ int nArg, /* Size of argument array */ sqlite3_value **apVal, /* Array of arguments */ sqlite_int64 *pRowid /* OUT: The affected (or effected) rowid */ ){ Fts3Table *p = (Fts3Table *)pVtab; int rc = SQLITE_OK; /* Return Code */ int isRemove = 0; /* True for an UPDATE or DELETE */ sqlite3_int64 iRemove = 0; /* Rowid removed by UPDATE or DELETE */ u32 *aSzIns; /* Sizes of inserted documents */ u32 *aSzDel; /* Sizes of deleted documents */ int nChng = 0; /* Net change in number of documents */ int bInsertDone = 0; assert( p->pSegments==0 ); /* Check for a "special" INSERT operation. One of the form: ** ** INSERT INTO xyz(xyz) VALUES('command'); */ if( nArg>1 && sqlite3_value_type(apVal[0])==SQLITE_NULL && sqlite3_value_type(apVal[p->nColumn+2])!=SQLITE_NULL ){ return fts3SpecialInsert(p, apVal[p->nColumn+2]); } /* Allocate space to hold the change in document sizes */ aSzIns = sqlite3_malloc( sizeof(aSzIns[0])*(p->nColumn+1)*2 ); if( aSzIns==0 ) return SQLITE_NOMEM; aSzDel = &aSzIns[p->nColumn+1]; memset(aSzIns, 0, sizeof(aSzIns[0])*(p->nColumn+1)*2); /* If this is an INSERT operation, or an UPDATE that modifies the rowid ** value, then this operation requires constraint handling. ** ** If the on-conflict mode is REPLACE, this means that the existing row ** should be deleted from the database before inserting the new row. Or, ** if the on-conflict mode is other than REPLACE, then this method must ** detect the conflict and return SQLITE_CONSTRAINT before beginning to ** modify the database file. */ if( nArg>1 ){ /* Find the value object that holds the new rowid value. */ sqlite3_value *pNewRowid = apVal[3+p->nColumn]; if( sqlite3_value_type(pNewRowid)==SQLITE_NULL ){ pNewRowid = apVal[1]; } if( sqlite3_value_type(pNewRowid)!=SQLITE_NULL && ( sqlite3_value_type(apVal[0])==SQLITE_NULL || sqlite3_value_int64(apVal[0])!=sqlite3_value_int64(pNewRowid) )){ /* The new rowid is not NULL (in this case the rowid will be ** automatically assigned and there is no chance of a conflict), and ** the statement is either an INSERT or an UPDATE that modifies the ** rowid column. So if the conflict mode is REPLACE, then delete any ** existing row with rowid=pNewRowid. ** ** Or, if the conflict mode is not REPLACE, insert the new record into ** the %_content table. If we hit the duplicate rowid constraint (or any ** other error) while doing so, return immediately. ** ** This branch may also run if pNewRowid contains a value that cannot ** be losslessly converted to an integer. In this case, the eventual ** call to fts3InsertData() (either just below or further on in this ** function) will return SQLITE_MISMATCH. If fts3DeleteByRowid is ** invoked, it will delete zero rows (since no row will have ** docid=$pNewRowid if $pNewRowid is not an integer value). */ if( sqlite3_vtab_on_conflict(p->db)==SQLITE_REPLACE ){ rc = fts3DeleteByRowid(p, pNewRowid, &nChng, aSzDel); }else{ rc = fts3InsertData(p, apVal, pRowid); bInsertDone = 1; } } } if( rc!=SQLITE_OK ){ sqlite3_free(aSzIns); return rc; } /* If this is a DELETE or UPDATE operation, remove the old record. */ if( sqlite3_value_type(apVal[0])!=SQLITE_NULL ){ assert( sqlite3_value_type(apVal[0])==SQLITE_INTEGER ); rc = fts3DeleteByRowid(p, apVal[0], &nChng, aSzDel); isRemove = 1; iRemove = sqlite3_value_int64(apVal[0]); } /* If this is an INSERT or UPDATE operation, insert the new record. */ if( nArg>1 && rc==SQLITE_OK ){ if( bInsertDone==0 ){ rc = fts3InsertData(p, apVal, pRowid); if( rc==SQLITE_CONSTRAINT ) rc = SQLITE_CORRUPT; } if( rc==SQLITE_OK && (!isRemove || *pRowid!=iRemove) ){ rc = fts3PendingTermsDocid(p, *pRowid); } if( rc==SQLITE_OK ){ rc = fts3InsertTerms(p, apVal, aSzIns); } if( p->bHasDocsize ){ |
︙ | ︙ |
Changes to ext/rtree/rtree.c.
︙ | ︙ | |||
2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 | sqlite3_bind_null(pRtree->pWriteRowid, 1); sqlite3_bind_null(pRtree->pWriteRowid, 2); sqlite3_step(pRtree->pWriteRowid); rc = sqlite3_reset(pRtree->pWriteRowid); *piRowid = sqlite3_last_insert_rowid(pRtree->db); return rc; } /* ** The xUpdate method for rtree module virtual tables. */ static int rtreeUpdate( sqlite3_vtab *pVtab, int nData, sqlite3_value **azData, sqlite_int64 *pRowid ){ Rtree *pRtree = (Rtree *)pVtab; int rc = SQLITE_OK; rtreeReference(pRtree); | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > < < < < < < < < < < | < < | < < | < < < < | < < < < < < < < < < < < | < < < < < < < < < < | < < < < < < < < < < < < < < < < < < < < | < < < < < < < < | < | < < < < < | < < < | < < < | 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 | sqlite3_bind_null(pRtree->pWriteRowid, 1); sqlite3_bind_null(pRtree->pWriteRowid, 2); sqlite3_step(pRtree->pWriteRowid); rc = sqlite3_reset(pRtree->pWriteRowid); *piRowid = sqlite3_last_insert_rowid(pRtree->db); return rc; } /* ** Remove the entry with rowid=iDelete from the r-tree structure. */ static int rtreeDeleteRowid(Rtree *pRtree, sqlite3_int64 iDelete){ int rc; /* Return code */ RtreeNode *pLeaf; /* Leaf node containing record iDelete */ int iCell; /* Index of iDelete cell in pLeaf */ RtreeNode *pRoot; /* Root node of rtree structure */ /* Obtain a reference to the root node to initialise Rtree.iDepth */ rc = nodeAcquire(pRtree, 1, 0, &pRoot); /* Obtain a reference to the leaf node that contains the entry ** about to be deleted. */ if( rc==SQLITE_OK ){ rc = findLeafNode(pRtree, iDelete, &pLeaf); } /* Delete the cell in question from the leaf node. */ if( rc==SQLITE_OK ){ int rc2; rc = nodeRowidIndex(pRtree, pLeaf, iDelete, &iCell); if( rc==SQLITE_OK ){ rc = deleteCell(pRtree, pLeaf, iCell, 0); } rc2 = nodeRelease(pRtree, pLeaf); if( rc==SQLITE_OK ){ rc = rc2; } } /* Delete the corresponding entry in the <rtree>_rowid table. */ if( rc==SQLITE_OK ){ sqlite3_bind_int64(pRtree->pDeleteRowid, 1, iDelete); sqlite3_step(pRtree->pDeleteRowid); rc = sqlite3_reset(pRtree->pDeleteRowid); } /* Check if the root node now has exactly one child. If so, remove ** it, schedule the contents of the child for reinsertion and ** reduce the tree height by one. ** ** This is equivalent to copying the contents of the child into ** the root node (the operation that Gutman's paper says to perform ** in this scenario). */ if( rc==SQLITE_OK && pRtree->iDepth>0 && NCELL(pRoot)==1 ){ int rc2; RtreeNode *pChild; i64 iChild = nodeGetRowid(pRtree, pRoot, 0); rc = nodeAcquire(pRtree, iChild, pRoot, &pChild); if( rc==SQLITE_OK ){ rc = removeNode(pRtree, pChild, pRtree->iDepth-1); } rc2 = nodeRelease(pRtree, pChild); if( rc==SQLITE_OK ) rc = rc2; if( rc==SQLITE_OK ){ pRtree->iDepth--; writeInt16(pRoot->zData, pRtree->iDepth); pRoot->isDirty = 1; } } /* Re-insert the contents of any underfull nodes removed from the tree. */ for(pLeaf=pRtree->pDeleted; pLeaf; pLeaf=pRtree->pDeleted){ if( rc==SQLITE_OK ){ rc = reinsertNodeContent(pRtree, pLeaf); } pRtree->pDeleted = pLeaf->pNext; sqlite3_free(pLeaf); } /* Release the reference to the root node. */ if( rc==SQLITE_OK ){ rc = nodeRelease(pRtree, pRoot); }else{ nodeRelease(pRtree, pRoot); } return rc; } /* ** The xUpdate method for rtree module virtual tables. */ static int rtreeUpdate( sqlite3_vtab *pVtab, int nData, sqlite3_value **azData, sqlite_int64 *pRowid ){ Rtree *pRtree = (Rtree *)pVtab; int rc = SQLITE_OK; RtreeCell cell; /* New cell to insert if nData>1 */ int bHaveRowid = 0; /* Set to 1 after new rowid is determined */ rtreeReference(pRtree); assert(nData>=1); /* Constraint handling. A write operation on an r-tree table may return ** SQLITE_CONSTRAINT for two reasons: ** ** 1. A duplicate rowid value, or ** 2. The supplied data violates the "x2>=x1" constraint. ** ** In the first case, if the conflict-handling mode is REPLACE, then ** the conflicting row can be removed before proceeding. In the second ** case, SQLITE_CONSTRAINT must be returned regardless of the ** conflict-handling mode specified by the user. */ if( nData>1 ){ int ii; /* Populate the cell.aCoord[] array. The first coordinate is azData[3]. */ assert( nData==(pRtree->nDim*2 + 3) ); if( pRtree->eCoordType==RTREE_COORD_REAL32 ){ for(ii=0; ii<(pRtree->nDim*2); ii+=2){ cell.aCoord[ii].f = (float)sqlite3_value_double(azData[ii+3]); cell.aCoord[ii+1].f = (float)sqlite3_value_double(azData[ii+4]); |
︙ | ︙ | |||
2753 2754 2755 2756 2757 2758 2759 | if( cell.aCoord[ii].i>cell.aCoord[ii+1].i ){ rc = SQLITE_CONSTRAINT; goto constraint; } } } | | > | < < > > > > | | | > > > > | | | > > > > > | > > > > > > > > > > > > > > > > > > > | 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 | if( cell.aCoord[ii].i>cell.aCoord[ii+1].i ){ rc = SQLITE_CONSTRAINT; goto constraint; } } } /* If a rowid value was supplied, check if it is already present in ** the table. If so, the constraint has failed. */ if( sqlite3_value_type(azData[2])!=SQLITE_NULL ){ cell.iRowid = sqlite3_value_int64(azData[2]); if( sqlite3_value_type(azData[0])==SQLITE_NULL || sqlite3_value_int64(azData[0])!=cell.iRowid ){ int steprc; sqlite3_bind_int64(pRtree->pReadRowid, 1, cell.iRowid); steprc = sqlite3_step(pRtree->pReadRowid); rc = sqlite3_reset(pRtree->pReadRowid); if( SQLITE_ROW==steprc ){ if( sqlite3_vtab_on_conflict(pRtree->db)==SQLITE_REPLACE ){ rc = rtreeDeleteRowid(pRtree, cell.iRowid); }else{ rc = SQLITE_CONSTRAINT; goto constraint; } } } bHaveRowid = 1; } } /* If azData[0] is not an SQL NULL value, it is the rowid of a ** record to delete from the r-tree table. The following block does ** just that. */ if( sqlite3_value_type(azData[0])!=SQLITE_NULL ){ rc = rtreeDeleteRowid(pRtree, sqlite3_value_int64(azData[0])); } /* If the azData[] array contains more than one element, elements ** (azData[2]..azData[argc-1]) contain a new record to insert into ** the r-tree structure. */ if( rc==SQLITE_OK && nData>1 ){ /* Insert the new record into the r-tree */ RtreeNode *pLeaf; /* Figure out the rowid of the new row. */ if( bHaveRowid==0 ){ rc = newRowid(pRtree, &cell.iRowid); } *pRowid = cell.iRowid; if( rc==SQLITE_OK ){ rc = ChooseLeaf(pRtree, &cell, 0, &pLeaf); } if( rc==SQLITE_OK ){ |
︙ | ︙ | |||
3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 | }; int iErr = (argc<6) ? 2 : argc>(RTREE_MAX_DIMENSIONS*2+4) ? 3 : argc%2; if( aErrMsg[iErr] ){ *pzErr = sqlite3_mprintf("%s", aErrMsg[iErr]); return SQLITE_ERROR; } /* Allocate the sqlite3_vtab structure */ nDb = strlen(argv[1]); nName = strlen(argv[2]); pRtree = (Rtree *)sqlite3_malloc(sizeof(Rtree)+nDb+nName+2); if( !pRtree ){ return SQLITE_NOMEM; | > > | 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 | }; int iErr = (argc<6) ? 2 : argc>(RTREE_MAX_DIMENSIONS*2+4) ? 3 : argc%2; if( aErrMsg[iErr] ){ *pzErr = sqlite3_mprintf("%s", aErrMsg[iErr]); return SQLITE_ERROR; } sqlite3_vtab_config(db, SQLITE_VTAB_CONSTRAINT_SUPPORT, 1); /* Allocate the sqlite3_vtab structure */ nDb = strlen(argv[1]); nName = strlen(argv[2]); pRtree = (Rtree *)sqlite3_malloc(sizeof(Rtree)+nDb+nName+2); if( !pRtree ){ return SQLITE_NOMEM; |
︙ | ︙ |
Changes to ext/rtree/rtree1.test.
︙ | ︙ | |||
27 28 29 30 31 32 33 34 35 36 37 38 39 40 | # rtree-3.*: Linear scans of r-tree data. # rtree-4.*: Test INSERT # rtree-5.*: Test DELETE # rtree-6.*: Test UPDATE # rtree-7.*: Test renaming an r-tree table. # rtree-8.*: Test constrained scans of r-tree data. # ifcapable !rtree { finish_test return } #---------------------------------------------------------------------------- | > > | 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 | # rtree-3.*: Linear scans of r-tree data. # rtree-4.*: Test INSERT # rtree-5.*: Test DELETE # rtree-6.*: Test UPDATE # rtree-7.*: Test renaming an r-tree table. # rtree-8.*: Test constrained scans of r-tree data. # # rtree-12.*: Test that on-conflict clauses are supported. # ifcapable !rtree { finish_test return } #---------------------------------------------------------------------------- |
︙ | ︙ | |||
412 413 414 415 416 417 418 419 | do_test rtree-11.2 { execsql { INSERT INTO t8 VALUES(NULL, 1.0, 1.0, 2.0, 2.0); SELECT last_insert_rowid(); } } {2} finish_test | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 | do_test rtree-11.2 { execsql { INSERT INTO t8 VALUES(NULL, 1.0, 1.0, 2.0, 2.0); SELECT last_insert_rowid(); } } {2} #------------------------------------------------------------------------- # Test on-conflict clause handling. # db_delete_and_reopen do_execsql_test 12.0 { CREATE VIRTUAL TABLE t1 USING rtree_i32(idx, x1, x2, y1, y2); INSERT INTO t1 VALUES(1, 1, 2, 3, 4); INSERT INTO t1 VALUES(2, 2, 3, 4, 5); INSERT INTO t1 VALUES(3, 3, 4, 5, 6); CREATE TABLE source(idx, x1, x2, y1, y2); INSERT INTO source VALUES(5, 8, 8, 8, 8); INSERT INTO source VALUES(2, 7, 7, 7, 7); } db_save_and_close foreach {tn sql_template testdata} { 1 "INSERT %CONF% INTO t1 VALUES(2, 7, 7, 7, 7)" { ROLLBACK 0 1 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6} ABORT 0 1 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6 4 4 5 6 7} IGNORE 0 0 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6 4 4 5 6 7} FAIL 0 1 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6 4 4 5 6 7} REPLACE 0 0 {1 1 2 3 4 2 7 7 7 7 3 3 4 5 6 4 4 5 6 7} } 2 "INSERT %CONF% INTO t1 SELECT * FROM source" { ROLLBACK 1 1 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6} ABORT 1 1 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6 4 4 5 6 7} IGNORE 1 0 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6 4 4 5 6 7 5 8 8 8 8} FAIL 1 1 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6 4 4 5 6 7 5 8 8 8 8} REPLACE 1 0 {1 1 2 3 4 2 7 7 7 7 3 3 4 5 6 4 4 5 6 7 5 8 8 8 8} } 3 "UPDATE %CONF% t1 SET idx = 2 WHERE idx = 4" { ROLLBACK 1 1 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6} ABORT 1 1 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6 4 4 5 6 7} IGNORE 1 0 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6 4 4 5 6 7} FAIL 1 1 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6 4 4 5 6 7} REPLACE 1 0 {1 1 2 3 4 2 4 5 6 7 3 3 4 5 6} } 3 "UPDATE %CONF% t1 SET idx = ((idx+1)%5)+1 WHERE idx > 2" { ROLLBACK 1 1 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6} ABORT 1 1 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6 4 4 5 6 7} IGNORE 1 0 {1 1 2 3 4 2 2 3 4 5 4 4 5 6 7 5 3 4 5 6} FAIL 1 1 {1 1 2 3 4 2 2 3 4 5 4 4 5 6 7 5 3 4 5 6} REPLACE 1 0 {1 4 5 6 7 2 2 3 4 5 5 3 4 5 6} } 4 "INSERT %CONF% INTO t1 VALUES(2, 7, 6, 7, 7)" { ROLLBACK 0 1 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6} ABORT 0 1 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6 4 4 5 6 7} IGNORE 0 0 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6 4 4 5 6 7} FAIL 0 1 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6 4 4 5 6 7} REPLACE 0 1 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6 4 4 5 6 7} } } { foreach {mode uses error data} $testdata { db_restore_and_reopen set sql [string map [list %CONF% "OR $mode"] $sql_template] set testname "12.$tn.[string tolower $mode]" execsql { BEGIN; INSERT INTO t1 VALUES(4, 4, 5, 6, 7); } set res(0) {0 {}} set res(1) {1 {constraint failed}} do_catchsql_test $testname.1 $sql $res($error) do_test $testname.2 [list sql_uses_stmt db $sql] $uses do_execsql_test $testname.3 { SELECT * FROM t1 ORDER BY idx } $data do_test $testname.4 { rtree_check db t1 } 0 db close } } finish_test |
Changes to main.mk.
︙ | ︙ | |||
297 298 299 300 301 302 303 304 305 306 307 308 309 310 | $(TOP)/src/vdbe.c \ $(TOP)/src/vdbemem.c \ $(TOP)/src/where.c \ parse.c \ $(TOP)/ext/fts3/fts3.c \ $(TOP)/ext/fts3/fts3_aux.c \ $(TOP)/ext/fts3/fts3_expr.c \ $(TOP)/ext/fts3/fts3_tokenizer.c \ $(TOP)/ext/fts3/fts3_write.c \ $(TOP)/ext/async/sqlite3async.c # Header files used by all library source files. # HDR = \ | > | 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 | $(TOP)/src/vdbe.c \ $(TOP)/src/vdbemem.c \ $(TOP)/src/where.c \ parse.c \ $(TOP)/ext/fts3/fts3.c \ $(TOP)/ext/fts3/fts3_aux.c \ $(TOP)/ext/fts3/fts3_expr.c \ $(TOP)/ext/fts3/fts3_term.c \ $(TOP)/ext/fts3/fts3_tokenizer.c \ $(TOP)/ext/fts3/fts3_write.c \ $(TOP)/ext/async/sqlite3async.c # Header files used by all library source files. # HDR = \ |
︙ | ︙ |
Changes to src/func.c.
︙ | ︙ | |||
772 773 774 775 776 777 778 779 780 781 782 783 784 785 | sqlite3_value **NotUsed2 ){ UNUSED_PARAMETER2(NotUsed, NotUsed2); /* IMP: R-24470-31136 This function is an SQL wrapper around the ** sqlite3_sourceid() C interface. */ sqlite3_result_text(context, sqlite3_sourceid(), -1, SQLITE_STATIC); } /* ** Implementation of the sqlite_compileoption_used() function. ** The result is an integer that identifies if the compiler option ** was used to build SQLite. */ #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS | > > > > > > > > > > > > > > > | 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 | sqlite3_value **NotUsed2 ){ UNUSED_PARAMETER2(NotUsed, NotUsed2); /* IMP: R-24470-31136 This function is an SQL wrapper around the ** sqlite3_sourceid() C interface. */ sqlite3_result_text(context, sqlite3_sourceid(), -1, SQLITE_STATIC); } /* ** Implementation of the sqlite_log() function. This is a wrapper around ** sqlite3_log(). The return value is NULL. The function exists purely for ** its side-effects. */ static void errlogFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ UNUSED_PARAMETER(argc); UNUSED_PARAMETER(context); sqlite3_log(sqlite3_value_int(argv[0]), "%s", sqlite3_value_text(argv[1])); } /* ** Implementation of the sqlite_compileoption_used() function. ** The result is an integer that identifies if the compiler option ** was used to build SQLite. */ #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS |
︙ | ︙ | |||
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 | /* FUNCTION(ifnull, 2, 0, 0, ifnullFunc ), */ {2,SQLITE_UTF8,SQLITE_FUNC_COALESCE,0,0,ifnullFunc,0,0,"ifnull",0,0}, FUNCTION(random, 0, 0, 0, randomFunc ), FUNCTION(randomblob, 1, 0, 0, randomBlob ), FUNCTION(nullif, 2, 0, 1, nullifFunc ), FUNCTION(sqlite_version, 0, 0, 0, versionFunc ), FUNCTION(sqlite_source_id, 0, 0, 0, sourceidFunc ), #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS FUNCTION(sqlite_compileoption_used,1, 0, 0, compileoptionusedFunc ), FUNCTION(sqlite_compileoption_get, 1, 0, 0, compileoptiongetFunc ), #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */ FUNCTION(quote, 1, 0, 0, quoteFunc ), FUNCTION(last_insert_rowid, 0, 0, 0, last_insert_rowid), FUNCTION(changes, 0, 0, 0, changes ), | > | 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 | /* FUNCTION(ifnull, 2, 0, 0, ifnullFunc ), */ {2,SQLITE_UTF8,SQLITE_FUNC_COALESCE,0,0,ifnullFunc,0,0,"ifnull",0,0}, FUNCTION(random, 0, 0, 0, randomFunc ), FUNCTION(randomblob, 1, 0, 0, randomBlob ), FUNCTION(nullif, 2, 0, 1, nullifFunc ), FUNCTION(sqlite_version, 0, 0, 0, versionFunc ), FUNCTION(sqlite_source_id, 0, 0, 0, sourceidFunc ), FUNCTION(sqlite_log, 2, 0, 0, errlogFunc ), #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS FUNCTION(sqlite_compileoption_used,1, 0, 0, compileoptionusedFunc ), FUNCTION(sqlite_compileoption_get, 1, 0, 0, compileoptiongetFunc ), #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */ FUNCTION(quote, 1, 0, 0, quoteFunc ), FUNCTION(last_insert_rowid, 0, 0, 0, last_insert_rowid), FUNCTION(changes, 0, 0, 0, changes ), |
︙ | ︙ |
Changes to src/insert.c.
︙ | ︙ | |||
965 966 967 968 969 970 971 972 973 974 975 976 977 978 | ** do the insertion. */ #ifndef SQLITE_OMIT_VIRTUALTABLE if( IsVirtual(pTab) ){ const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); sqlite3VtabMakeWritable(pParse, pTab); sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB); sqlite3MayAbort(pParse); }else #endif { int isReplace; /* Set to true if constraints may cause a replace */ sqlite3GenerateConstraintChecks(pParse, pTab, baseCur, regIns, aRegIdx, keyColumn>=0, 0, onError, endOfLoop, &isReplace | > | 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 | ** do the insertion. */ #ifndef SQLITE_OMIT_VIRTUALTABLE if( IsVirtual(pTab) ){ const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); sqlite3VtabMakeWritable(pParse, pTab); sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB); sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError); sqlite3MayAbort(pParse); }else #endif { int isReplace; /* Set to true if constraints may cause a replace */ sqlite3GenerateConstraintChecks(pParse, pTab, baseCur, regIns, aRegIdx, keyColumn>=0, 0, onError, endOfLoop, &isReplace |
︙ | ︙ | |||
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 | return 0; /* pDestIdx has no corresponding index in pSrc */ } } #ifndef SQLITE_OMIT_CHECK if( pDest->pCheck && sqlite3ExprCompare(pSrc->pCheck, pDest->pCheck) ){ return 0; /* Tables have different CHECK constraints. Ticket #2252 */ } #endif /* If we get this far, it means either: ** ** * We can always do the transfer if the table contains an ** an integer primary key ** | > > > > > > > > > > > > | 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 | return 0; /* pDestIdx has no corresponding index in pSrc */ } } #ifndef SQLITE_OMIT_CHECK if( pDest->pCheck && sqlite3ExprCompare(pSrc->pCheck, pDest->pCheck) ){ return 0; /* Tables have different CHECK constraints. Ticket #2252 */ } #endif #ifndef SQLITE_OMIT_FOREIGN_KEY /* Disallow the transfer optimization if the destination table constains ** any foreign key constraints. This is more restrictive than necessary. ** But the main beneficiary of the transfer optimization is the VACUUM ** command, and the VACUUM command disables foreign key constraints. So ** the extra complication to make this rule less restrictive is probably ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e] */ if( (pParse->db->flags & SQLITE_ForeignKeys)!=0 && pDest->pFKey!=0 ){ return 0; } #endif /* If we get this far, it means either: ** ** * We can always do the transfer if the table contains an ** an integer primary key ** |
︙ | ︙ |
Changes to src/malloc.c.
︙ | ︙ | |||
262 263 264 265 266 267 268 | int nFull; void *p; assert( sqlite3_mutex_held(mem0.mutex) ); nFull = sqlite3GlobalConfig.m.xRoundup(n); sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, n); if( mem0.alarmCallback!=0 ){ int nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); | | | 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 | int nFull; void *p; assert( sqlite3_mutex_held(mem0.mutex) ); nFull = sqlite3GlobalConfig.m.xRoundup(n); sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, n); if( mem0.alarmCallback!=0 ){ int nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); if( nUsed >= mem0.alarmThreshold - nFull ){ mem0.nearlyFull = 1; sqlite3MallocAlarm(nFull); }else{ mem0.nearlyFull = 0; } } p = sqlite3GlobalConfig.m.xMalloc(nFull); |
︙ | ︙ | |||
503 504 505 506 507 508 509 | sqlite3_free(p); } /* ** Change the size of an existing memory allocation */ void *sqlite3Realloc(void *pOld, int nBytes){ | | | 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 | sqlite3_free(p); } /* ** Change the size of an existing memory allocation */ void *sqlite3Realloc(void *pOld, int nBytes){ int nOld, nNew, nDiff; void *pNew; if( pOld==0 ){ return sqlite3Malloc(nBytes); /* IMP: R-28354-25769 */ } if( nBytes<=0 ){ sqlite3_free(pOld); /* IMP: R-31593-10574 */ return 0; |
︙ | ︙ | |||
526 527 528 529 530 531 532 | ** xRoundup. */ nNew = sqlite3GlobalConfig.m.xRoundup(nBytes); if( nOld==nNew ){ pNew = pOld; }else if( sqlite3GlobalConfig.bMemstat ){ sqlite3_mutex_enter(mem0.mutex); sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, nBytes); | > | | | | 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 | ** xRoundup. */ nNew = sqlite3GlobalConfig.m.xRoundup(nBytes); if( nOld==nNew ){ pNew = pOld; }else if( sqlite3GlobalConfig.bMemstat ){ sqlite3_mutex_enter(mem0.mutex); sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, nBytes); nDiff = nNew - nOld; if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED) >= mem0.alarmThreshold-nDiff ){ sqlite3MallocAlarm(nNew-nOld); } assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) ); assert( sqlite3MemdebugNoType(pOld, ~MEMTYPE_HEAP) ); pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); if( pNew==0 && mem0.alarmCallback ){ sqlite3MallocAlarm(nBytes); pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); } if( pNew ){ nNew = sqlite3MallocSize(pNew); sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nDiff); } sqlite3_mutex_leave(mem0.mutex); }else{ pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); } assert( EIGHT_BYTE_ALIGNMENT(pNew) ); /* IMP: R-04675-44850 */ return pNew; |
︙ | ︙ |
Changes to src/os_unix.c.
︙ | ︙ | |||
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 | ** testing and debugging only. */ #if SQLITE_THREADSAFE #define threadid pthread_self() #else #define threadid 0 #endif /* ** Many system calls are accessed through pointer-to-functions so that ** they may be overridden at runtime to facilitate fault injection during ** testing and sandboxing. The following array holds the names and pointers ** to all overrideable system calls. */ static struct unix_syscall { const char *zName; /* Name of the sytem call */ sqlite3_syscall_ptr pCurrent; /* Current value of the system call */ sqlite3_syscall_ptr pDefault; /* Default value */ } aSyscall[] = { | > > > > > > > > > > > > | | 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 | ** testing and debugging only. */ #if SQLITE_THREADSAFE #define threadid pthread_self() #else #define threadid 0 #endif /* ** Different Unix systems declare open() in different ways. Same use ** open(const char*,int,mode_t). Others use open(const char*,int,...). ** The difference is important when using a pointer to the function. ** ** The safest way to deal with the problem is to always use this wrapper ** which always has the same well-defined interface. */ static int posixOpen(const char *zFile, int flags, int mode){ return open(zFile, flags, mode); } /* ** Many system calls are accessed through pointer-to-functions so that ** they may be overridden at runtime to facilitate fault injection during ** testing and sandboxing. The following array holds the names and pointers ** to all overrideable system calls. */ static struct unix_syscall { const char *zName; /* Name of the sytem call */ sqlite3_syscall_ptr pCurrent; /* Current value of the system call */ sqlite3_syscall_ptr pDefault; /* Default value */ } aSyscall[] = { { "open", (sqlite3_syscall_ptr)posixOpen, 0 }, #define osOpen ((int(*)(const char*,int,int))aSyscall[0].pCurrent) { "close", (sqlite3_syscall_ptr)close, 0 }, #define osClose ((int(*)(int))aSyscall[1].pCurrent) { "access", (sqlite3_syscall_ptr)access, 0 }, #define osAccess ((int(*)(const char*,int))aSyscall[2].pCurrent) |
︙ | ︙ | |||
326 327 328 329 330 331 332 | { "fcntl", (sqlite3_syscall_ptr)fcntl, 0 }, #define osFcntl ((int(*)(int,int,...))aSyscall[7].pCurrent) { "read", (sqlite3_syscall_ptr)read, 0 }, #define osRead ((ssize_t(*)(int,void*,size_t))aSyscall[8].pCurrent) | | | | 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 | { "fcntl", (sqlite3_syscall_ptr)fcntl, 0 }, #define osFcntl ((int(*)(int,int,...))aSyscall[7].pCurrent) { "read", (sqlite3_syscall_ptr)read, 0 }, #define osRead ((ssize_t(*)(int,void*,size_t))aSyscall[8].pCurrent) #if defined(USE_PREAD) || SQLITE_ENABLE_LOCKING_STYLE { "pread", (sqlite3_syscall_ptr)pread, 0 }, #else { "pread", (sqlite3_syscall_ptr)0, 0 }, #endif #define osPread ((ssize_t(*)(int,void*,size_t,off_t))aSyscall[9].pCurrent) #if defined(USE_PREAD64) { "pread64", (sqlite3_syscall_ptr)pread64, 0 }, #else { "pread64", (sqlite3_syscall_ptr)0, 0 }, #endif #define osPread64 ((ssize_t(*)(int,void*,size_t,off_t))aSyscall[10].pCurrent) { "write", (sqlite3_syscall_ptr)write, 0 }, #define osWrite ((ssize_t(*)(int,const void*,size_t))aSyscall[11].pCurrent) #if defined(USE_PREAD) || SQLITE_ENABLE_LOCKING_STYLE { "pwrite", (sqlite3_syscall_ptr)pwrite, 0 }, #else { "pwrite", (sqlite3_syscall_ptr)0, 0 }, #endif #define osPwrite ((ssize_t(*)(int,const void*,size_t,off_t))\ aSyscall[12].pCurrent) |
︙ | ︙ | |||
929 930 931 932 933 934 935 | unsigned char bProcessLock; /* An exclusive process lock is held */ int nRef; /* Number of pointers to this structure */ unixShmNode *pShmNode; /* Shared memory associated with this inode */ int nLock; /* Number of outstanding file locks */ UnixUnusedFd *pUnused; /* Unused file descriptors to close */ unixInodeInfo *pNext; /* List of all unixInodeInfo objects */ unixInodeInfo *pPrev; /* .... doubly linked */ | | | 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 | unsigned char bProcessLock; /* An exclusive process lock is held */ int nRef; /* Number of pointers to this structure */ unixShmNode *pShmNode; /* Shared memory associated with this inode */ int nLock; /* Number of outstanding file locks */ UnixUnusedFd *pUnused; /* Unused file descriptors to close */ unixInodeInfo *pNext; /* List of all unixInodeInfo objects */ unixInodeInfo *pPrev; /* .... doubly linked */ #if SQLITE_ENABLE_LOCKING_STYLE unsigned long long sharedByte; /* for AFP simulated shared lock */ #endif #if OS_VXWORKS sem_t *pSem; /* Named POSIX semaphore */ char aSemName[MAX_PATHNAME+2]; /* Name of that semaphore */ #endif }; |
︙ | ︙ | |||
3086 3087 3088 3089 3090 3091 3092 | offset += wrote; pBuf = &((char*)pBuf)[wrote]; } SimulateIOError(( wrote=(-1), amt=1 )); SimulateDiskfullError(( wrote=0, amt=1 )); if( amt>0 ){ | | | 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 | offset += wrote; pBuf = &((char*)pBuf)[wrote]; } SimulateIOError(( wrote=(-1), amt=1 )); SimulateDiskfullError(( wrote=0, amt=1 )); if( amt>0 ){ if( wrote<0 && pFile->lastErrno!=ENOSPC ){ /* lastErrno set by seekAndWrite */ return SQLITE_IOERR_WRITE; }else{ pFile->lastErrno = 0; /* not a system error */ return SQLITE_FULL; } } |
︙ | ︙ | |||
4162 4163 4164 4165 4166 4167 4168 | while(pShmNode->nRegion<=iRegion){ void *pMem; if( pShmNode->h>=0 ){ pMem = mmap(0, szRegion, PROT_READ|PROT_WRITE, MAP_SHARED, pShmNode->h, pShmNode->nRegion*szRegion ); if( pMem==MAP_FAILED ){ | | | 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 | while(pShmNode->nRegion<=iRegion){ void *pMem; if( pShmNode->h>=0 ){ pMem = mmap(0, szRegion, PROT_READ|PROT_WRITE, MAP_SHARED, pShmNode->h, pShmNode->nRegion*szRegion ); if( pMem==MAP_FAILED ){ rc = unixLogError(SQLITE_IOERR_SHMMAP, "mmap", pShmNode->zFilename); goto shmpage_out; } }else{ pMem = sqlite3_malloc(szRegion); if( pMem==0 ){ rc = SQLITE_NOMEM; goto shmpage_out; |
︙ | ︙ |
Changes to src/os_win.c.
︙ | ︙ | |||
113 114 115 116 117 118 119 120 121 122 123 124 125 126 | WCHAR *zDeleteOnClose; /* Name of file to delete when closing */ HANDLE hMutex; /* Mutex used to control access to shared lock */ HANDLE hShared; /* Shared memory segment used for locking */ winceLock local; /* Locks obtained by this instance of winFile */ winceLock *shared; /* Global shared lock memory for the file */ #endif }; /* ** Forward prototypes. */ static int getSectorSize( sqlite3_vfs *pVfs, const char *zRelative /* UTF-8 file name */ | > | 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 | WCHAR *zDeleteOnClose; /* Name of file to delete when closing */ HANDLE hMutex; /* Mutex used to control access to shared lock */ HANDLE hShared; /* Shared memory segment used for locking */ winceLock local; /* Locks obtained by this instance of winFile */ winceLock *shared; /* Global shared lock memory for the file */ #endif }; /* ** Forward prototypes. */ static int getSectorSize( sqlite3_vfs *pVfs, const char *zRelative /* UTF-8 file name */ |
︙ | ︙ | |||
281 282 283 284 285 286 287 | return zFilenameUtf8; } /* ** Convert UTF-8 to multibyte character string. Space to hold the ** returned string is obtained from malloc(). */ | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 | return zFilenameUtf8; } /* ** Convert UTF-8 to multibyte character string. Space to hold the ** returned string is obtained from malloc(). */ char *sqlite3_win32_utf8_to_mbcs(const char *zFilename){ char *zFilenameMbcs; WCHAR *zTmpWide; zTmpWide = utf8ToUnicode(zFilename); if( zTmpWide==0 ){ return 0; } zFilenameMbcs = unicodeToMbcs(zTmpWide); free(zTmpWide); return zFilenameMbcs; } /* ** The return value of getLastErrorMsg ** is zero if the error message fits in the buffer, or non-zero ** otherwise (if the message was truncated). */ static int getLastErrorMsg(int nBuf, char *zBuf){ /* FormatMessage returns 0 on failure. Otherwise it ** returns the number of TCHARs written to the output ** buffer, excluding the terminating null char. */ DWORD error = GetLastError(); DWORD dwLen = 0; char *zOut = 0; if( isNT() ){ WCHAR *zTempWide = NULL; dwLen = FormatMessageW(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, NULL, error, 0, (LPWSTR) &zTempWide, 0, 0); if( dwLen > 0 ){ /* allocate a buffer and convert to UTF8 */ zOut = unicodeToUtf8(zTempWide); /* free the system buffer allocated by FormatMessage */ LocalFree(zTempWide); } /* isNT() is 1 if SQLITE_OS_WINCE==1, so this else is never executed. ** Since the ASCII version of these Windows API do not exist for WINCE, ** it's important to not reference them for WINCE builds. */ #if SQLITE_OS_WINCE==0 }else{ char *zTemp = NULL; dwLen = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, NULL, error, 0, (LPSTR) &zTemp, 0, 0); if( dwLen > 0 ){ /* allocate a buffer and convert to UTF8 */ zOut = sqlite3_win32_mbcs_to_utf8(zTemp); /* free the system buffer allocated by FormatMessage */ LocalFree(zTemp); } #endif } if( 0 == dwLen ){ sqlite3_snprintf(nBuf, zBuf, "OsError 0x%x (%u)", error, error); }else{ /* copy a maximum of nBuf chars to output buffer */ sqlite3_snprintf(nBuf, zBuf, "%s", zOut); /* free the UTF8 buffer */ free(zOut); } return 0; } /* ** ** This function - winLogErrorAtLine() - is only ever called via the macro ** winLogError(). ** ** This routine is invoked after an error occurs in an OS function. ** It logs a message using sqlite3_log() containing the current value of ** error code and, if possible, the human-readable equivalent from ** FormatMessage. ** ** The first argument passed to the macro should be the error code that ** will be returned to SQLite (e.g. SQLITE_IOERR_DELETE, SQLITE_CANTOPEN). ** The two subsequent arguments should be the name of the OS function that ** failed and the the associated file-system path, if any. */ #define winLogError(a,b,c) winLogErrorAtLine(a,b,c,__LINE__) static int winLogErrorAtLine( int errcode, /* SQLite error code */ const char *zFunc, /* Name of OS function that failed */ const char *zPath, /* File path associated with error */ int iLine /* Source line number where error occurred */ ){ char zMsg[500]; /* Human readable error text */ int i; /* Loop counter */ DWORD iErrno = GetLastError(); /* Error code */ zMsg[0] = 0; getLastErrorMsg(sizeof(zMsg), zMsg); assert( errcode!=SQLITE_OK ); if( zPath==0 ) zPath = ""; for(i=0; zMsg[i] && zMsg[i]!='\r' && zMsg[i]!='\n'; i++){} zMsg[i] = 0; sqlite3_log(errcode, "os_win.c:%d: (%d) %s(%s) - %s", iLine, iErrno, zFunc, zPath, zMsg ); return errcode; } #if SQLITE_OS_WINCE /************************************************************************* ** This section contains code for WinCE only. */ /* ** WindowsCE does not have a localtime() function. So create a ** substitute. |
︙ | ︙ | |||
371 372 373 374 375 376 377 378 379 380 381 382 383 384 | if (*zTok == '\\') *zTok = '_'; } /* Create/open the named mutex */ pFile->hMutex = CreateMutexW(NULL, FALSE, zName); if (!pFile->hMutex){ pFile->lastErrno = GetLastError(); free(zName); return FALSE; } /* Acquire the mutex before continuing */ winceMutexAcquire(pFile->hMutex); | > | 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 | if (*zTok == '\\') *zTok = '_'; } /* Create/open the named mutex */ pFile->hMutex = CreateMutexW(NULL, FALSE, zName); if (!pFile->hMutex){ pFile->lastErrno = GetLastError(); winLogError(SQLITE_ERROR, "winceCreateLock1", zFilename); free(zName); return FALSE; } /* Acquire the mutex before continuing */ winceMutexAcquire(pFile->hMutex); |
︙ | ︙ | |||
402 403 404 405 406 407 408 409 410 411 412 413 414 415 | /* If we succeeded in making the shared memory handle, map it. */ if (pFile->hShared){ pFile->shared = (winceLock*)MapViewOfFile(pFile->hShared, FILE_MAP_READ|FILE_MAP_WRITE, 0, 0, sizeof(winceLock)); /* If mapping failed, close the shared memory handle and erase it */ if (!pFile->shared){ pFile->lastErrno = GetLastError(); CloseHandle(pFile->hShared); pFile->hShared = NULL; } } /* If shared memory could not be created, then close the mutex and fail */ if (pFile->hShared == NULL){ | > | 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 | /* If we succeeded in making the shared memory handle, map it. */ if (pFile->hShared){ pFile->shared = (winceLock*)MapViewOfFile(pFile->hShared, FILE_MAP_READ|FILE_MAP_WRITE, 0, 0, sizeof(winceLock)); /* If mapping failed, close the shared memory handle and erase it */ if (!pFile->shared){ pFile->lastErrno = GetLastError(); winLogError(SQLITE_ERROR, "winceCreateLock2", zFilename); CloseHandle(pFile->hShared); pFile->hShared = NULL; } } /* If shared memory could not be created, then close the mutex and fail */ if (pFile->hShared == NULL){ |
︙ | ︙ | |||
647 648 649 650 651 652 653 654 655 656 657 658 659 660 | ** INVALID_SET_FILE_POINTER may also be a valid new offset. So to determine ** whether an error has actually occured, it is also necessary to call ** GetLastError(). */ dwRet = SetFilePointer(pFile->h, lowerBits, &upperBits, FILE_BEGIN); if( (dwRet==INVALID_SET_FILE_POINTER && GetLastError()!=NO_ERROR) ){ pFile->lastErrno = GetLastError(); return 1; } return 0; } /* | > | 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 | ** INVALID_SET_FILE_POINTER may also be a valid new offset. So to determine ** whether an error has actually occured, it is also necessary to call ** GetLastError(). */ dwRet = SetFilePointer(pFile->h, lowerBits, &upperBits, FILE_BEGIN); if( (dwRet==INVALID_SET_FILE_POINTER && GetLastError()!=NO_ERROR) ){ pFile->lastErrno = GetLastError(); winLogError(SQLITE_IOERR_SEEK, "seekWinFile", pFile->zPath); return 1; } return 0; } /* |
︙ | ︙ | |||
692 693 694 695 696 697 698 | Sleep(100); /* Wait a little before trying again */ } free(pFile->zDeleteOnClose); } #endif OSTRACE(("CLOSE %d %s\n", pFile->h, rc ? "ok" : "failed")); OpenCounter(-1); | | > | 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 | Sleep(100); /* Wait a little before trying again */ } free(pFile->zDeleteOnClose); } #endif OSTRACE(("CLOSE %d %s\n", pFile->h, rc ? "ok" : "failed")); OpenCounter(-1); return rc ? SQLITE_OK : winLogError(SQLITE_IOERR_CLOSE, "winClose", pFile->zPath); } /* ** Read data from a file into a buffer. Return SQLITE_OK if all ** bytes were read successfully and SQLITE_IOERR if anything goes ** wrong. */ |
︙ | ︙ | |||
718 719 720 721 722 723 724 | OSTRACE(("READ %d lock=%d\n", pFile->h, pFile->locktype)); if( seekWinFile(pFile, offset) ){ return SQLITE_FULL; } if( !ReadFile(pFile->h, pBuf, amt, &nRead, 0) ){ pFile->lastErrno = GetLastError(); | | | 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 | OSTRACE(("READ %d lock=%d\n", pFile->h, pFile->locktype)); if( seekWinFile(pFile, offset) ){ return SQLITE_FULL; } if( !ReadFile(pFile->h, pBuf, amt, &nRead, 0) ){ pFile->lastErrno = GetLastError(); return winLogError(SQLITE_IOERR_READ, "winRead", pFile->zPath); } if( nRead<(DWORD)amt ){ /* Unread parts of the buffer must be zero-filled */ memset(&((char*)pBuf)[nRead], 0, amt-nRead); return SQLITE_IOERR_SHORT_READ; } |
︙ | ︙ | |||
769 770 771 772 773 774 775 | } } if( rc ){ if( pFile->lastErrno==ERROR_HANDLE_DISK_FULL ){ return SQLITE_FULL; } | | | 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 | } } if( rc ){ if( pFile->lastErrno==ERROR_HANDLE_DISK_FULL ){ return SQLITE_FULL; } return winLogError(SQLITE_IOERR_WRITE, "winWrite", pFile->zPath); } return SQLITE_OK; } /* ** Truncate an open file to a specified size */ |
︙ | ︙ | |||
797 798 799 800 801 802 803 | */ if( pFile->szChunk ){ nByte = ((nByte + pFile->szChunk - 1)/pFile->szChunk) * pFile->szChunk; } /* SetEndOfFile() returns non-zero when successful, or zero when it fails. */ if( seekWinFile(pFile, nByte) ){ | | | | 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 | */ if( pFile->szChunk ){ nByte = ((nByte + pFile->szChunk - 1)/pFile->szChunk) * pFile->szChunk; } /* SetEndOfFile() returns non-zero when successful, or zero when it fails. */ if( seekWinFile(pFile, nByte) ){ rc = winLogError(SQLITE_IOERR_TRUNCATE, "winTruncate1", pFile->zPath); }else if( 0==SetEndOfFile(pFile->h) ){ pFile->lastErrno = GetLastError(); rc = winLogError(SQLITE_IOERR_TRUNCATE, "winTruncate2", pFile->zPath); } OSTRACE(("TRUNCATE %d %lld %s\n", pFile->h, nByte, rc ? "failed" : "ok")); return rc; } #ifdef SQLITE_TEST |
︙ | ︙ | |||
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 | /* ** Make sure all writes to a particular file are committed to disk. */ static int winSync(sqlite3_file *id, int flags){ #if !defined(NDEBUG) || !defined(SQLITE_NO_SYNC) || defined(SQLITE_DEBUG) winFile *pFile = (winFile*)id; #else UNUSED_PARAMETER(id); #endif assert( pFile ); /* Check that one of SQLITE_SYNC_NORMAL or FULL was passed */ assert((flags&0x0F)==SQLITE_SYNC_NORMAL || (flags&0x0F)==SQLITE_SYNC_FULL ); OSTRACE(("SYNC %d lock=%d\n", pFile->h, pFile->locktype)); #ifndef SQLITE_TEST UNUSED_PARAMETER(flags); #else | > > > > > > | < < < < < < | > > | | | 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 | /* ** Make sure all writes to a particular file are committed to disk. */ static int winSync(sqlite3_file *id, int flags){ #if !defined(NDEBUG) || !defined(SQLITE_NO_SYNC) || defined(SQLITE_DEBUG) winFile *pFile = (winFile*)id; BOOL rc; #else UNUSED_PARAMETER(id); #endif assert( pFile ); /* Check that one of SQLITE_SYNC_NORMAL or FULL was passed */ assert((flags&0x0F)==SQLITE_SYNC_NORMAL || (flags&0x0F)==SQLITE_SYNC_FULL ); OSTRACE(("SYNC %d lock=%d\n", pFile->h, pFile->locktype)); /* Unix cannot, but some systems may return SQLITE_FULL from here. This ** line is to test that doing so does not cause any problems. */ SimulateDiskfullError( return SQLITE_FULL ); #ifndef SQLITE_TEST UNUSED_PARAMETER(flags); #else if( (flags&0x0F)==SQLITE_SYNC_FULL ){ sqlite3_fullsync_count++; } sqlite3_sync_count++; #endif /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a ** no-op */ #ifdef SQLITE_NO_SYNC return SQLITE_OK; #else rc = FlushFileBuffers(pFile->h); SimulateIOError( rc=FALSE ); if( rc ){ return SQLITE_OK; }else{ pFile->lastErrno = GetLastError(); return winLogError(SQLITE_IOERR_FSYNC, "winSync", pFile->zPath); } #endif } /* ** Determine the current size of a file in bytes */ static int winFileSize(sqlite3_file *id, sqlite3_int64 *pSize){ DWORD upperBits; DWORD lowerBits; winFile *pFile = (winFile*)id; DWORD error; assert( id!=0 ); SimulateIOError(return SQLITE_IOERR_FSTAT); lowerBits = GetFileSize(pFile->h, &upperBits); if( (lowerBits == INVALID_FILE_SIZE) && ((error = GetLastError()) != NO_ERROR) ) { pFile->lastErrno = error; return winLogError(SQLITE_IOERR_FSTAT, "winFileSize", pFile->zPath); } *pSize = (((sqlite3_int64)upperBits)<<32) + lowerBits; return SQLITE_OK; } /* ** LOCKFILE_FAIL_IMMEDIATELY is undefined on some Windows systems. |
︙ | ︙ | |||
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 | sqlite3_randomness(sizeof(lk), &lk); pFile->sharedLockByte = (short)((lk & 0x7fffffff)%(SHARED_SIZE - 1)); res = LockFile(pFile->h, SHARED_FIRST+pFile->sharedLockByte, 0, 1, 0); #endif } if( res == 0 ){ pFile->lastErrno = GetLastError(); } return res; } /* ** Undo a readlock */ static int unlockReadLock(winFile *pFile){ int res; if( isNT() ){ res = UnlockFile(pFile->h, SHARED_FIRST, 0, SHARED_SIZE, 0); /* isNT() is 1 if SQLITE_OS_WINCE==1, so this else is never executed. */ #if SQLITE_OS_WINCE==0 }else{ res = UnlockFile(pFile->h, SHARED_FIRST + pFile->sharedLockByte, 0, 1, 0); #endif } | > | > | 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 | sqlite3_randomness(sizeof(lk), &lk); pFile->sharedLockByte = (short)((lk & 0x7fffffff)%(SHARED_SIZE - 1)); res = LockFile(pFile->h, SHARED_FIRST+pFile->sharedLockByte, 0, 1, 0); #endif } if( res == 0 ){ pFile->lastErrno = GetLastError(); /* No need to log a failure to lock */ } return res; } /* ** Undo a readlock */ static int unlockReadLock(winFile *pFile){ int res; if( isNT() ){ res = UnlockFile(pFile->h, SHARED_FIRST, 0, SHARED_SIZE, 0); /* isNT() is 1 if SQLITE_OS_WINCE==1, so this else is never executed. */ #if SQLITE_OS_WINCE==0 }else{ res = UnlockFile(pFile->h, SHARED_FIRST + pFile->sharedLockByte, 0, 1, 0); #endif } if( res==0 && GetLastError()!=ERROR_NOT_LOCKED ){ pFile->lastErrno = GetLastError(); winLogError(SQLITE_IOERR_UNLOCK, "unlockReadLock", pFile->zPath); } return res; } /* ** Lock the file with the lock specified by parameter locktype - one ** of the following: |
︙ | ︙ | |||
1139 1140 1141 1142 1143 1144 1145 | pFile->locktype, pFile->sharedLockByte)); type = pFile->locktype; if( type>=EXCLUSIVE_LOCK ){ UnlockFile(pFile->h, SHARED_FIRST, 0, SHARED_SIZE, 0); if( locktype==SHARED_LOCK && !getReadLock(pFile) ){ /* This should never happen. We should always be able to ** reacquire the read lock */ | | | 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 | pFile->locktype, pFile->sharedLockByte)); type = pFile->locktype; if( type>=EXCLUSIVE_LOCK ){ UnlockFile(pFile->h, SHARED_FIRST, 0, SHARED_SIZE, 0); if( locktype==SHARED_LOCK && !getReadLock(pFile) ){ /* This should never happen. We should always be able to ** reacquire the read lock */ rc = winLogError(SQLITE_IOERR_UNLOCK, "winUnlock", pFile->zPath); } } if( type>=RESERVED_LOCK ){ UnlockFile(pFile->h, RESERVED_BYTE, 0, 1, 0); } if( locktype==NO_LOCK && type>=SHARED_LOCK ){ unlockReadLock(pFile); |
︙ | ︙ | |||
1496 1497 1498 1499 1500 1501 1502 | /* Check to see if another process is holding the dead-man switch. ** If not, truncate the file to zero length. */ if( winShmSystemLock(pShmNode, _SHM_WRLCK, WIN_SHM_DMS, 1)==SQLITE_OK ){ rc = winTruncate((sqlite3_file *)&pShmNode->hFile, 0); if( rc!=SQLITE_OK ){ | | | 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 | /* Check to see if another process is holding the dead-man switch. ** If not, truncate the file to zero length. */ if( winShmSystemLock(pShmNode, _SHM_WRLCK, WIN_SHM_DMS, 1)==SQLITE_OK ){ rc = winTruncate((sqlite3_file *)&pShmNode->hFile, 0); if( rc!=SQLITE_OK ){ rc = winLogError(SQLITE_IOERR_SHMOPEN, "winOpenShm", pDbFd->zPath); } } if( rc==SQLITE_OK ){ winShmSystemLock(pShmNode, _SHM_UNLCK, WIN_SHM_DMS, 1); rc = winShmSystemLock(pShmNode, _SHM_RDLCK, WIN_SHM_DMS, 1); } if( rc ) goto shm_open_err; |
︙ | ︙ | |||
1755 1756 1757 1758 1759 1760 1761 | /* The requested region is not mapped into this processes address space. ** Check to see if it has been allocated (i.e. if the wal-index file is ** large enough to contain the requested region). */ rc = winFileSize((sqlite3_file *)&pShmNode->hFile, &sz); if( rc!=SQLITE_OK ){ | | | | 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 | /* The requested region is not mapped into this processes address space. ** Check to see if it has been allocated (i.e. if the wal-index file is ** large enough to contain the requested region). */ rc = winFileSize((sqlite3_file *)&pShmNode->hFile, &sz); if( rc!=SQLITE_OK ){ rc = winLogError(SQLITE_IOERR_SHMSIZE, "winShmMap1", pDbFd->zPath); goto shmpage_out; } if( sz<nByte ){ /* The requested memory region does not exist. If isWrite is set to ** zero, exit early. *pp will be set to NULL and SQLITE_OK returned. ** ** Alternatively, if isWrite is non-zero, use ftruncate() to allocate ** the requested memory region. */ if( !isWrite ) goto shmpage_out; rc = winTruncate((sqlite3_file *)&pShmNode->hFile, nByte); if( rc!=SQLITE_OK ){ rc = winLogError(SQLITE_IOERR_SHMSIZE, "winShmMap2", pDbFd->zPath); goto shmpage_out; } } /* Map the requested memory region into this processes address space. */ apNew = (struct ShmRegion *)sqlite3_realloc( pShmNode->aRegion, (iRegion+1)*sizeof(apNew[0]) |
︙ | ︙ | |||
1806 1807 1808 1809 1810 1811 1812 | ); OSTRACE(("SHM-MAP pid-%d map region=%d offset=%d size=%d %s\n", (int)GetCurrentProcessId(), pShmNode->nRegion, iOffset, szRegion, pMap ? "ok" : "failed")); } if( !pMap ){ pShmNode->lastErrno = GetLastError(); | | | 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 | ); OSTRACE(("SHM-MAP pid-%d map region=%d offset=%d size=%d %s\n", (int)GetCurrentProcessId(), pShmNode->nRegion, iOffset, szRegion, pMap ? "ok" : "failed")); } if( !pMap ){ pShmNode->lastErrno = GetLastError(); rc = winLogError(SQLITE_IOERR_SHMMAP, "winShmMap3", pDbFd->zPath); if( hMap ) CloseHandle(hMap); goto shmpage_out; } pShmNode->aRegion[pShmNode->nRegion].pMap = pMap; pShmNode->aRegion[pShmNode->nRegion].hMap = hMap; pShmNode->nRegion++; |
︙ | ︙ | |||
1888 1889 1890 1891 1892 1893 1894 | void *zConverted = 0; if( isNT() ){ zConverted = utf8ToUnicode(zFilename); /* isNT() is 1 if SQLITE_OS_WINCE==1, so this else is never executed. */ #if SQLITE_OS_WINCE==0 }else{ | | | 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 | void *zConverted = 0; if( isNT() ){ zConverted = utf8ToUnicode(zFilename); /* isNT() is 1 if SQLITE_OS_WINCE==1, so this else is never executed. */ #if SQLITE_OS_WINCE==0 }else{ zConverted = sqlite3_win32_utf8_to_mbcs(zFilename); #endif } /* caller will handle out of memory */ return zConverted; } /* |
︙ | ︙ | |||
1968 1969 1970 1971 1972 1973 1974 | } zBuf[j] = 0; OSTRACE(("TEMP FILENAME: %s\n", zBuf)); return SQLITE_OK; } | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 | } zBuf[j] = 0; OSTRACE(("TEMP FILENAME: %s\n", zBuf)); return SQLITE_OK; } /* ** Open a file. */ static int winOpen( sqlite3_vfs *pVfs, /* Not used */ const char *zName, /* Name of the file (UTF-8) */ sqlite3_file *id, /* Write the SQLite file handle here */ |
︙ | ︙ | |||
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 | OSTRACE(("OPEN %d %s 0x%lx %s\n", h, zName, dwDesiredAccess, h==INVALID_HANDLE_VALUE ? "failed" : "ok")); if( h==INVALID_HANDLE_VALUE ){ pFile->lastErrno = GetLastError(); free(zConverted); if( isReadWrite ){ return winOpen(pVfs, zName, id, ((flags|SQLITE_OPEN_READONLY)&~(SQLITE_OPEN_CREATE|SQLITE_OPEN_READWRITE)), pOutFlags); }else{ return SQLITE_CANTOPEN_BKPT; } | > | 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 | OSTRACE(("OPEN %d %s 0x%lx %s\n", h, zName, dwDesiredAccess, h==INVALID_HANDLE_VALUE ? "failed" : "ok")); if( h==INVALID_HANDLE_VALUE ){ pFile->lastErrno = GetLastError(); winLogError(SQLITE_CANTOPEN, "winOpen", zUtf8Name); free(zConverted); if( isReadWrite ){ return winOpen(pVfs, zName, id, ((flags|SQLITE_OPEN_READONLY)&~(SQLITE_OPEN_CREATE|SQLITE_OPEN_READWRITE)), pOutFlags); }else{ return SQLITE_CANTOPEN_BKPT; } |
︙ | ︙ | |||
2304 2305 2306 2307 2308 2309 2310 | } free(zConverted); OSTRACE(("DELETE \"%s\" %s\n", zFilename, ( (rc==INVALID_FILE_ATTRIBUTES) && (error==ERROR_FILE_NOT_FOUND)) ? "ok" : "failed" )); return ( (rc == INVALID_FILE_ATTRIBUTES) | | > | 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 | } free(zConverted); OSTRACE(("DELETE \"%s\" %s\n", zFilename, ( (rc==INVALID_FILE_ATTRIBUTES) && (error==ERROR_FILE_NOT_FOUND)) ? "ok" : "failed" )); return ( (rc == INVALID_FILE_ATTRIBUTES) && (error == ERROR_FILE_NOT_FOUND)) ? SQLITE_OK : winLogError(SQLITE_IOERR_DELETE, "winDelete", zFilename); } /* ** Check the existance and status of a file. */ static int winAccess( sqlite3_vfs *pVfs, /* Not used on win32 */ |
︙ | ︙ | |||
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 | && sAttrData.nFileSizeLow==0 ){ attr = INVALID_FILE_ATTRIBUTES; }else{ attr = sAttrData.dwFileAttributes; } }else{ if( GetLastError()!=ERROR_FILE_NOT_FOUND ){ free(zConverted); return SQLITE_IOERR_ACCESS; }else{ attr = INVALID_FILE_ATTRIBUTES; } } /* isNT() is 1 if SQLITE_OS_WINCE==1, so this else is never executed. | > | 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 | && sAttrData.nFileSizeLow==0 ){ attr = INVALID_FILE_ATTRIBUTES; }else{ attr = sAttrData.dwFileAttributes; } }else{ if( GetLastError()!=ERROR_FILE_NOT_FOUND ){ winLogError(SQLITE_IOERR_ACCESS, "winAccess", zFilename); free(zConverted); return SQLITE_IOERR_ACCESS; }else{ attr = INVALID_FILE_ATTRIBUTES; } } /* isNT() is 1 if SQLITE_OS_WINCE==1, so this else is never executed. |
︙ | ︙ |
Changes to src/select.c.
︙ | ︙ | |||
4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 | /* Search for the index that has the least amount of columns. If ** there is such an index, and it has less columns than the table ** does, then we can assume that it consumes less space on disk and ** will therefore be cheaper to scan to determine the query result. ** In this case set iRoot to the root page number of the index b-tree ** and pKeyInfo to the KeyInfo structure required to navigate the ** index. ** ** In practice the KeyInfo structure will not be used. It is only ** passed to keep OP_OpenRead happy. */ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ | > > | | 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 | /* Search for the index that has the least amount of columns. If ** there is such an index, and it has less columns than the table ** does, then we can assume that it consumes less space on disk and ** will therefore be cheaper to scan to determine the query result. ** In this case set iRoot to the root page number of the index b-tree ** and pKeyInfo to the KeyInfo structure required to navigate the ** index. ** ** (2011-04-15) Do not do a full scan of an unordered index. ** ** In practice the KeyInfo structure will not be used. It is only ** passed to keep OP_OpenRead happy. */ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ if( pIdx->bUnordered==0 && (!pBest || pIdx->nColumn<pBest->nColumn) ){ pBest = pIdx; } } if( pBest && pBest->nColumn<pTab->nCol ){ iRoot = pBest->tnum; pKeyInfo = sqlite3IndexKeyinfo(pParse, pBest); } |
︙ | ︙ |
Changes to src/sqlite.h.in.
︙ | ︙ | |||
366 367 368 369 370 371 372 | ** KEYWORDS: {result code} {result codes} ** ** Many SQLite functions return an integer result code from the set shown ** here in order to indicates success or failure. ** ** New error codes may be added in future versions of SQLite. ** | | > | 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 | ** KEYWORDS: {result code} {result codes} ** ** Many SQLite functions return an integer result code from the set shown ** here in order to indicates success or failure. ** ** New error codes may be added in future versions of SQLite. ** ** See also: [SQLITE_IOERR_READ | extended result codes], ** [sqlite3_vtab_on_conflict()] [SQLITE_ROLLBACK | result codes]. */ #define SQLITE_OK 0 /* Successful result */ /* beginning-of-error-codes */ #define SQLITE_ERROR 1 /* SQL error or missing database */ #define SQLITE_INTERNAL 2 /* Internal logic error in SQLite */ #define SQLITE_PERM 3 /* Access permission denied */ #define SQLITE_ABORT 4 /* Callback routine requested an abort */ |
︙ | ︙ | |||
443 444 445 446 447 448 449 450 451 452 453 454 455 456 | #define SQLITE_IOERR_CHECKRESERVEDLOCK (SQLITE_IOERR | (14<<8)) #define SQLITE_IOERR_LOCK (SQLITE_IOERR | (15<<8)) #define SQLITE_IOERR_CLOSE (SQLITE_IOERR | (16<<8)) #define SQLITE_IOERR_DIR_CLOSE (SQLITE_IOERR | (17<<8)) #define SQLITE_IOERR_SHMOPEN (SQLITE_IOERR | (18<<8)) #define SQLITE_IOERR_SHMSIZE (SQLITE_IOERR | (19<<8)) #define SQLITE_IOERR_SHMLOCK (SQLITE_IOERR | (20<<8)) #define SQLITE_LOCKED_SHAREDCACHE (SQLITE_LOCKED | (1<<8)) #define SQLITE_BUSY_RECOVERY (SQLITE_BUSY | (1<<8)) #define SQLITE_CANTOPEN_NOTEMPDIR (SQLITE_CANTOPEN | (1<<8)) /* ** CAPI3REF: Flags For File Open Operations ** | > > | 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 | #define SQLITE_IOERR_CHECKRESERVEDLOCK (SQLITE_IOERR | (14<<8)) #define SQLITE_IOERR_LOCK (SQLITE_IOERR | (15<<8)) #define SQLITE_IOERR_CLOSE (SQLITE_IOERR | (16<<8)) #define SQLITE_IOERR_DIR_CLOSE (SQLITE_IOERR | (17<<8)) #define SQLITE_IOERR_SHMOPEN (SQLITE_IOERR | (18<<8)) #define SQLITE_IOERR_SHMSIZE (SQLITE_IOERR | (19<<8)) #define SQLITE_IOERR_SHMLOCK (SQLITE_IOERR | (20<<8)) #define SQLITE_IOERR_SHMMAP (SQLITE_IOERR | (21<<8)) #define SQLITE_IOERR_SEEK (SQLITE_IOERR | (22<<8)) #define SQLITE_LOCKED_SHAREDCACHE (SQLITE_LOCKED | (1<<8)) #define SQLITE_BUSY_RECOVERY (SQLITE_BUSY | (1<<8)) #define SQLITE_CANTOPEN_NOTEMPDIR (SQLITE_CANTOPEN | (1<<8)) /* ** CAPI3REF: Flags For File Open Operations ** |
︙ | ︙ | |||
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 | ** CAPI3REF: Authorizer Return Codes ** ** The [sqlite3_set_authorizer | authorizer callback function] must ** return either [SQLITE_OK] or one of these two constants in order ** to signal SQLite whether or not the action is permitted. See the ** [sqlite3_set_authorizer | authorizer documentation] for additional ** information. */ #define SQLITE_DENY 1 /* Abort the SQL statement with an error */ #define SQLITE_IGNORE 2 /* Don't allow access, but don't generate an error */ /* ** CAPI3REF: Authorizer Action Codes ** | > > > | 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 | ** CAPI3REF: Authorizer Return Codes ** ** The [sqlite3_set_authorizer | authorizer callback function] must ** return either [SQLITE_OK] or one of these two constants in order ** to signal SQLite whether or not the action is permitted. See the ** [sqlite3_set_authorizer | authorizer documentation] for additional ** information. ** ** Note that SQLITE_IGNORE is also used as a [SQLITE_ROLLBACK | return code] ** from the [sqlite3_vtab_on_conflict()] interface. */ #define SQLITE_DENY 1 /* Abort the SQL statement with an error */ #define SQLITE_IGNORE 2 /* Don't allow access, but don't generate an error */ /* ** CAPI3REF: Authorizer Action Codes ** |
︙ | ︙ | |||
4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 | int (*xSync)(sqlite3_vtab *pVTab); int (*xCommit)(sqlite3_vtab *pVTab); int (*xRollback)(sqlite3_vtab *pVTab); int (*xFindFunction)(sqlite3_vtab *pVtab, int nArg, const char *zName, void (**pxFunc)(sqlite3_context*,int,sqlite3_value**), void **ppArg); int (*xRename)(sqlite3_vtab *pVtab, const char *zNew); }; /* ** CAPI3REF: Virtual Table Indexing Information ** KEYWORDS: sqlite3_index_info ** ** The sqlite3_index_info structure and its substructures is used as part | > > > > > | 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 | int (*xSync)(sqlite3_vtab *pVTab); int (*xCommit)(sqlite3_vtab *pVTab); int (*xRollback)(sqlite3_vtab *pVTab); int (*xFindFunction)(sqlite3_vtab *pVtab, int nArg, const char *zName, void (**pxFunc)(sqlite3_context*,int,sqlite3_value**), void **ppArg); int (*xRename)(sqlite3_vtab *pVtab, const char *zNew); /* The methods above are in version 0 of the sqlite_module object. Those ** below are for version 1 and greater. */ int (*xSavepoint)(sqlite3_vtab *pVTab, int); int (*xRelease)(sqlite3_vtab *pVTab, int); int (*xRollbackTo)(sqlite3_vtab *pVTab, int); }; /* ** CAPI3REF: Virtual Table Indexing Information ** KEYWORDS: sqlite3_index_info ** ** The sqlite3_index_info structure and its substructures is used as part |
︙ | ︙ | |||
6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 | /* ** CAPI3REF: Checkpoint operation parameters ** ** These constants can be used as the 3rd parameter to ** [sqlite3_wal_checkpoint_v2()]. See the [sqlite3_wal_checkpoint_v2()] ** documentation for additional information about the meaning and use of ** each of these values. */ #define SQLITE_CHECKPOINT_PASSIVE 0 #define SQLITE_CHECKPOINT_FULL 1 #define SQLITE_CHECKPOINT_RESTART 2 /* ** Undo the hack that converts floating point types to integer for ** builds on processors without floating point support. */ #ifdef SQLITE_OMIT_FLOATING_POINT | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 | /* ** CAPI3REF: Checkpoint operation parameters ** ** These constants can be used as the 3rd parameter to ** [sqlite3_wal_checkpoint_v2()]. See the [sqlite3_wal_checkpoint_v2()] ** documentation for additional information about the meaning and use of ** each of these values. ** ** <dt>SQLITE_CONFIG_GETMUTEX</dt> ** <dd> ^(This option takes a single argument which is a pointer to an */ #define SQLITE_CHECKPOINT_PASSIVE 0 #define SQLITE_CHECKPOINT_FULL 1 #define SQLITE_CHECKPOINT_RESTART 2 /* ** CAPI3REF: Virtual Table Interface Configuration ** ** This function may be called by either the [xConnect] or [xCreate] method ** of a [virtual table] implementation to configure ** various facets of the virtual table interface. ** ** If this interface is invoked outside the context of an xConnect or ** xCreate virtual table method then the behavior is undefined. ** ** At present, there is only one option that may be configured using ** this function. (See [SQLITE_VTAB_CONSTRAINT_SUPPORT].) Further options ** may be added in the future. */ int sqlite3_vtab_config(sqlite3*, int op, ...); /* ** CAPI3REF: Virtual Table Configuration Options ** ** These macros define the various options to the ** [sqlite3_vtab_config()] interface that [virtual table] implementations ** can use to customize and optimize their behavior. ** ** <dl> ** <dt>SQLITE_VTAB_CONSTRAINT_SUPPORT ** <dd>If the second argument to [sqlite3_vtab_config()] is ** SQLITE_VTAB_CONSTRAINT_SUPPORT, then SQLite expects this function to ** have been called with three arguments, the third of which being of ** type 'int'. If the third argument is zero, then the virtual table ** is indicating that it does not support constraints. In this case if ** a call to the [xUpdate] method returns [SQLITE_CONSTRAINT], the entire ** statement is rolled back as if [ON CONFLICT | OR ABORT] had been ** specified as part of the users SQL statement, regardless of the actual ** ON CONFLICT mode specified. ** ** If the third argument passed is non-zero, then the virtual table ** implementation must guarantee that if [xUpdate] returns ** [SQLITE_CONSTRAINT], it does so before any modifications to internal ** or persistent data structures have been made. If the [ON CONFLICT] ** mode is ABORT, FAIL, IGNORE or ROLLBACK, SQLite is able to roll back ** a statement or database transaction, and abandon or continue processing ** the current SQL statement as appropriate. If the ON CONFLICT mode is ** REPLACE and the [xUpdate] method returns [SQLITE_CONSTRAINT], SQLite ** handles this as if the ON CONFLICT mode had been ABORT. ** ** Virtual table implementations that are required to handle OR REPLACE ** must do so within the xUpdate method. If a call to the ** [sqlite3_vtab_on_conflict()] function indicates that the current ON ** CONFLICT policy is REPLACE, the virtual table implementation should ** silently replace the appropriate rows within the xUpdate callback and ** return SQLITE_OK. Or, if this is not possible, it may return ** SQLITE_CONSTRAINT, in which case SQLite falls back to OR ABORT ** constraint handling. ** </dl> ** */ #define SQLITE_VTAB_CONSTRAINT_SUPPORT 1 /* ** CAPI3REF: Determine The Virtual Table Conflict Policy ** ** This function may only be called from within a call to the [xUpdate] method ** of a [virtual table] implementation for an INSERT or UPDATE operation. ^The ** value returned is one of [SQLITE_ROLLBACK], [SQLITE_IGNORE], [SQLITE_FAIL], ** [SQLITE_ABORT], or [SQLITE_REPLACE], according to the [ON CONFLICT] mode ** of the SQL statement that triggered the call to the [xUpdate] method of the ** [virtual table]. */ int sqlite3_vtab_on_conflict(sqlite3 *); /* ** CAPI3REF: Conflict resolution modes ** ** These constants are returned by [sqlite3_vtab_on_conflict()] to ** inform a [virtual table] implementation what the [ON CONFLICT] mode ** is for the SQL statement being evaluated. ** ** Note that the [SQLITE_IGNORE] constant is also used as a potential ** return value from the [sqlite3_set_authorizer()] callback and that ** [SQLITE_ABORT] is also a [result code]. */ #define SQLITE_ROLLBACK 1 /* #define SQLITE_IGNORE 2 // Also used by sqlite3_authorizer() callback */ #define SQLITE_FAIL 3 /* #define SQLITE_ABORT 4 // Also an error code */ #define SQLITE_REPLACE 5 /* ** Undo the hack that converts floating point types to integer for ** builds on processors without floating point support. */ #ifdef SQLITE_OMIT_FLOATING_POINT |
︙ | ︙ |
Changes to src/sqliteInt.h.
︙ | ︙ | |||
628 629 630 631 632 633 634 635 636 637 638 639 640 641 | typedef struct TableLock TableLock; typedef struct Token Token; typedef struct Trigger Trigger; typedef struct TriggerPrg TriggerPrg; typedef struct TriggerStep TriggerStep; typedef struct UnpackedRecord UnpackedRecord; typedef struct VTable VTable; typedef struct Walker Walker; typedef struct WherePlan WherePlan; typedef struct WhereInfo WhereInfo; typedef struct WhereLevel WhereLevel; /* ** Defer sourcing vdbe.h and btree.h until after the "u8" and | > | 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 | typedef struct TableLock TableLock; typedef struct Token Token; typedef struct Trigger Trigger; typedef struct TriggerPrg TriggerPrg; typedef struct TriggerStep TriggerStep; typedef struct UnpackedRecord UnpackedRecord; typedef struct VTable VTable; typedef struct VtabCtx VtabCtx; typedef struct Walker Walker; typedef struct WherePlan WherePlan; typedef struct WhereInfo WhereInfo; typedef struct WhereLevel WhereLevel; /* ** Defer sourcing vdbe.h and btree.h until after the "u8" and |
︙ | ︙ | |||
807 808 809 810 811 812 813 814 815 816 817 818 819 820 | int errMask; /* & result codes with this before returning */ u8 autoCommit; /* The auto-commit flag. */ u8 temp_store; /* 1: file 2: memory 0: default */ u8 mallocFailed; /* True if we have seen a malloc failure */ u8 dfltLockMode; /* Default locking-mode for attached dbs */ signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */ u8 suppressErr; /* Do not issue error messages if true */ int nextPagesize; /* Pagesize after VACUUM if >0 */ int nTable; /* Number of tables in the database */ CollSeq *pDfltColl; /* The default collating sequence (BINARY) */ i64 lastRowid; /* ROWID of most recent insert (see above) */ u32 magic; /* Magic number for detect library misuse */ int nChange; /* Value returned by sqlite3_changes() */ int nTotalChange; /* Value returned by sqlite3_total_changes() */ | > | 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 | int errMask; /* & result codes with this before returning */ u8 autoCommit; /* The auto-commit flag. */ u8 temp_store; /* 1: file 2: memory 0: default */ u8 mallocFailed; /* True if we have seen a malloc failure */ u8 dfltLockMode; /* Default locking-mode for attached dbs */ signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */ u8 suppressErr; /* Do not issue error messages if true */ u8 vtabOnConflict; /* Value to return for s3_vtab_on_conflict() */ int nextPagesize; /* Pagesize after VACUUM if >0 */ int nTable; /* Number of tables in the database */ CollSeq *pDfltColl; /* The default collating sequence (BINARY) */ i64 lastRowid; /* ROWID of most recent insert (see above) */ u32 magic; /* Magic number for detect library misuse */ int nChange; /* Value returned by sqlite3_changes() */ int nTotalChange; /* Value returned by sqlite3_total_changes() */ |
︙ | ︙ | |||
865 866 867 868 869 870 871 | #ifndef SQLITE_OMIT_PROGRESS_CALLBACK int (*xProgress)(void *); /* The progress callback */ void *pProgressArg; /* Argument to the progress callback */ int nProgressOps; /* Number of opcodes for progress callback */ #endif #ifndef SQLITE_OMIT_VIRTUALTABLE Hash aModule; /* populated by sqlite3_create_module() */ | | | 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 | #ifndef SQLITE_OMIT_PROGRESS_CALLBACK int (*xProgress)(void *); /* The progress callback */ void *pProgressArg; /* Argument to the progress callback */ int nProgressOps; /* Number of opcodes for progress callback */ #endif #ifndef SQLITE_OMIT_VIRTUALTABLE Hash aModule; /* populated by sqlite3_create_module() */ VtabCtx *pVtabCtx; /* Context for active vtab connect/create */ VTable **aVTrans; /* Virtual tables with open transactions */ int nVTrans; /* Allocated size of aVTrans */ VTable *pDisconnect; /* Disconnect these in next sqlite3_prepare() */ #endif FuncDefHash aFunc; /* Hash table of connection functions */ Hash aCollSeq; /* All collating sequences */ BusyHandler busyHandler; /* Busy callback */ |
︙ | ︙ | |||
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 | ** the first argument. */ struct VTable { sqlite3 *db; /* Database connection associated with this table */ Module *pMod; /* Pointer to module implementation */ sqlite3_vtab *pVtab; /* Pointer to vtab instance */ int nRef; /* Number of pointers to this structure */ VTable *pNext; /* Next in linked list (see above) */ }; /* ** Each SQL table is represented in memory by an instance of the ** following structure. ** | > | 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 | ** the first argument. */ struct VTable { sqlite3 *db; /* Database connection associated with this table */ Module *pMod; /* Pointer to module implementation */ sqlite3_vtab *pVtab; /* Pointer to vtab instance */ int nRef; /* Number of pointers to this structure */ u8 bConstraint; /* True if constraints are supported */ VTable *pNext; /* Next in linked list (see above) */ }; /* ** Each SQL table is represented in memory by an instance of the ** following structure. ** |
︙ | ︙ | |||
3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 | # define sqlite3VtabSync(X,Y) SQLITE_OK # define sqlite3VtabRollback(X) # define sqlite3VtabCommit(X) # define sqlite3VtabInSync(db) 0 # define sqlite3VtabLock(X) # define sqlite3VtabUnlock(X) # define sqlite3VtabUnlockList(X) #else void sqlite3VtabClear(sqlite3 *db, Table*); int sqlite3VtabSync(sqlite3 *db, char **); int sqlite3VtabRollback(sqlite3 *db); int sqlite3VtabCommit(sqlite3 *db); void sqlite3VtabLock(VTable *); void sqlite3VtabUnlock(VTable *); void sqlite3VtabUnlockList(sqlite3*); # define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0) #endif void sqlite3VtabMakeWritable(Parse*,Table*); void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*); void sqlite3VtabFinishParse(Parse*, Token*); void sqlite3VtabArgInit(Parse*); void sqlite3VtabArgExtend(Parse*, Token*); | > > | 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 | # define sqlite3VtabSync(X,Y) SQLITE_OK # define sqlite3VtabRollback(X) # define sqlite3VtabCommit(X) # define sqlite3VtabInSync(db) 0 # define sqlite3VtabLock(X) # define sqlite3VtabUnlock(X) # define sqlite3VtabUnlockList(X) # define sqlite3VtabSavepoint(X, Y, Z) SQLITE_OK #else void sqlite3VtabClear(sqlite3 *db, Table*); int sqlite3VtabSync(sqlite3 *db, char **); int sqlite3VtabRollback(sqlite3 *db); int sqlite3VtabCommit(sqlite3 *db); void sqlite3VtabLock(VTable *); void sqlite3VtabUnlock(VTable *); void sqlite3VtabUnlockList(sqlite3*); int sqlite3VtabSavepoint(sqlite3 *, int, int); # define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0) #endif void sqlite3VtabMakeWritable(Parse*,Table*); void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*); void sqlite3VtabFinishParse(Parse*, Token*); void sqlite3VtabArgInit(Parse*); void sqlite3VtabArgExtend(Parse*, Token*); |
︙ | ︙ |
Changes to src/test1.c.
︙ | ︙ | |||
10 11 12 13 14 15 16 17 18 19 20 21 22 23 | ** ************************************************************************* ** Code for testing all sorts of SQLite interfaces. This code ** is not included in the SQLite library. It is used for automated ** testing of the SQLite library. */ #include "sqliteInt.h" #include "tcl.h" #include <stdlib.h> #include <string.h> /* ** This is a copy of the first part of the SqliteDb structure in ** tclsqlite.c. We need it here so that the get_sqlite_pointer routine | > | 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | ** ************************************************************************* ** Code for testing all sorts of SQLite interfaces. This code ** is not included in the SQLite library. It is used for automated ** testing of the SQLite library. */ #include "sqliteInt.h" #include "vdbeInt.h" #include "tcl.h" #include <stdlib.h> #include <string.h> /* ** This is a copy of the first part of the SqliteDb structure in ** tclsqlite.c. We need it here so that the get_sqlite_pointer routine |
︙ | ︙ | |||
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 | } if( getStmtPointer(interp, Tcl_GetString(objv[1]), &pStmt) ) return TCL_ERROR; rc = sqlite3_stmt_readonly(pStmt); Tcl_SetObjResult(interp, Tcl_NewBooleanObj(rc)); return TCL_OK; } /* ** Usage: sqlite3_reset STMT ** ** Reset a statement handle. */ | > > > > > > > > > > > > > > > > > > > > > > > > > > | 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 | } if( getStmtPointer(interp, Tcl_GetString(objv[1]), &pStmt) ) return TCL_ERROR; rc = sqlite3_stmt_readonly(pStmt); Tcl_SetObjResult(interp, Tcl_NewBooleanObj(rc)); return TCL_OK; } /* ** Usage: uses_stmt_journal STMT ** ** Return true if STMT uses a statement journal. */ static int uses_stmt_journal( void * clientData, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[] ){ sqlite3_stmt *pStmt; int rc; if( objc!=2 ){ Tcl_AppendResult(interp, "wrong # args: should be \"", Tcl_GetStringFromObj(objv[0], 0), " STMT", 0); return TCL_ERROR; } if( getStmtPointer(interp, Tcl_GetString(objv[1]), &pStmt) ) return TCL_ERROR; rc = sqlite3_stmt_readonly(pStmt); Tcl_SetObjResult(interp, Tcl_NewBooleanObj(((Vdbe *)pStmt)->usesStmtJournal)); return TCL_OK; } /* ** Usage: sqlite3_reset STMT ** ** Reset a statement handle. */ |
︙ | ︙ | |||
5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 | { "sqlite3_expired", test_expired ,0 }, { "sqlite3_transfer_bindings", test_transfer_bind ,0 }, { "sqlite3_changes", test_changes ,0 }, { "sqlite3_step", test_step ,0 }, { "sqlite3_sql", test_sql ,0 }, { "sqlite3_next_stmt", test_next_stmt ,0 }, { "sqlite3_stmt_readonly", test_stmt_readonly ,0 }, { "sqlite3_release_memory", test_release_memory, 0}, { "sqlite3_soft_heap_limit", test_soft_heap_limit, 0}, { "sqlite3_thread_cleanup", test_thread_cleanup, 0}, { "sqlite3_pager_refcounts", test_pager_refcounts, 0}, { "sqlite3_load_extension", test_load_extension, 0}, | > | 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 | { "sqlite3_expired", test_expired ,0 }, { "sqlite3_transfer_bindings", test_transfer_bind ,0 }, { "sqlite3_changes", test_changes ,0 }, { "sqlite3_step", test_step ,0 }, { "sqlite3_sql", test_sql ,0 }, { "sqlite3_next_stmt", test_next_stmt ,0 }, { "sqlite3_stmt_readonly", test_stmt_readonly ,0 }, { "uses_stmt_journal", uses_stmt_journal ,0 }, { "sqlite3_release_memory", test_release_memory, 0}, { "sqlite3_soft_heap_limit", test_soft_heap_limit, 0}, { "sqlite3_thread_cleanup", test_thread_cleanup, 0}, { "sqlite3_pager_refcounts", test_pager_refcounts, 0}, { "sqlite3_load_extension", test_load_extension, 0}, |
︙ | ︙ |
Changes to src/test_demovfs.c.
︙ | ︙ | |||
124 125 126 127 128 129 130 131 132 133 134 135 136 137 | #include <sys/types.h> #include <sys/stat.h> #include <sys/file.h> #include <sys/param.h> #include <unistd.h> #include <time.h> #include <errno.h> /* ** Size of the write buffer used by journal files in bytes. */ #ifndef SQLITE_DEMOVFS_BUFFERSZ # define SQLITE_DEMOVFS_BUFFERSZ 8192 #endif | > | 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 | #include <sys/types.h> #include <sys/stat.h> #include <sys/file.h> #include <sys/param.h> #include <unistd.h> #include <time.h> #include <errno.h> #include <fcntl.h> /* ** Size of the write buffer used by journal files in bytes. */ #ifndef SQLITE_DEMOVFS_BUFFERSZ # define SQLITE_DEMOVFS_BUFFERSZ 8192 #endif |
︙ | ︙ |
Changes to src/update.c.
︙ | ︙ | |||
19 20 21 22 23 24 25 | static void updateVirtualTable( Parse *pParse, /* The parsing context */ SrcList *pSrc, /* The virtual table to be modified */ Table *pTab, /* The virtual table */ ExprList *pChanges, /* The columns to change in the UPDATE statement */ Expr *pRowidExpr, /* Expression used to recompute the rowid */ int *aXRef, /* Mapping from columns of pTab to entries in pChanges */ | | > | 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | static void updateVirtualTable( Parse *pParse, /* The parsing context */ SrcList *pSrc, /* The virtual table to be modified */ Table *pTab, /* The virtual table */ ExprList *pChanges, /* The columns to change in the UPDATE statement */ Expr *pRowidExpr, /* Expression used to recompute the rowid */ int *aXRef, /* Mapping from columns of pTab to entries in pChanges */ Expr *pWhere, /* WHERE clause of the UPDATE statement */ int onError /* ON CONFLICT strategy */ ); #endif /* SQLITE_OMIT_VIRTUALTABLE */ /* ** The most recently coded instruction was an OP_Column to retrieve the ** i-th column of table pTab. This routine sets the P4 parameter of the ** OP_Column to the default value, if any. |
︙ | ︙ | |||
263 264 265 266 267 268 269 | if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); sqlite3BeginWriteOperation(pParse, 1, iDb); #ifndef SQLITE_OMIT_VIRTUALTABLE /* Virtual tables must be handled separately */ if( IsVirtual(pTab) ){ updateVirtualTable(pParse, pTabList, pTab, pChanges, pRowidExpr, aXRef, | | | 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 | if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); sqlite3BeginWriteOperation(pParse, 1, iDb); #ifndef SQLITE_OMIT_VIRTUALTABLE /* Virtual tables must be handled separately */ if( IsVirtual(pTab) ){ updateVirtualTable(pParse, pTabList, pTab, pChanges, pRowidExpr, aXRef, pWhere, onError); pWhere = 0; pTabList = 0; goto update_cleanup; } #endif /* Allocate required registers. */ |
︙ | ︙ | |||
593 594 595 596 597 598 599 | static void updateVirtualTable( Parse *pParse, /* The parsing context */ SrcList *pSrc, /* The virtual table to be modified */ Table *pTab, /* The virtual table */ ExprList *pChanges, /* The columns to change in the UPDATE statement */ Expr *pRowid, /* Expression used to recompute the rowid */ int *aXRef, /* Mapping from columns of pTab to entries in pChanges */ | | > | 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 | static void updateVirtualTable( Parse *pParse, /* The parsing context */ SrcList *pSrc, /* The virtual table to be modified */ Table *pTab, /* The virtual table */ ExprList *pChanges, /* The columns to change in the UPDATE statement */ Expr *pRowid, /* Expression used to recompute the rowid */ int *aXRef, /* Mapping from columns of pTab to entries in pChanges */ Expr *pWhere, /* WHERE clause of the UPDATE statement */ int onError /* ON CONFLICT strategy */ ){ Vdbe *v = pParse->pVdbe; /* Virtual machine under construction */ ExprList *pEList = 0; /* The result set of the SELECT statement */ Select *pSelect = 0; /* The SELECT statement */ Expr *pExpr; /* Temporary expression */ int ephemTab; /* Table holding the result of the SELECT */ int i; /* Loop counter */ |
︙ | ︙ | |||
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 | sqlite3VdbeAddOp3(v, OP_Column, ephemTab, 0, iReg); sqlite3VdbeAddOp3(v, OP_Column, ephemTab, (pRowid?1:0), iReg+1); for(i=0; i<pTab->nCol; i++){ sqlite3VdbeAddOp3(v, OP_Column, ephemTab, i+1+(pRowid!=0), iReg+2+i); } sqlite3VtabMakeWritable(pParse, pTab); sqlite3VdbeAddOp4(v, OP_VUpdate, 0, pTab->nCol+2, iReg, pVTab, P4_VTAB); sqlite3MayAbort(pParse); sqlite3VdbeAddOp2(v, OP_Next, ephemTab, addr+1); sqlite3VdbeJumpHere(v, addr); sqlite3VdbeAddOp2(v, OP_Close, ephemTab, 0); /* Cleanup */ sqlite3SelectDelete(db, pSelect); } #endif /* SQLITE_OMIT_VIRTUALTABLE */ | > | 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 | sqlite3VdbeAddOp3(v, OP_Column, ephemTab, 0, iReg); sqlite3VdbeAddOp3(v, OP_Column, ephemTab, (pRowid?1:0), iReg+1); for(i=0; i<pTab->nCol; i++){ sqlite3VdbeAddOp3(v, OP_Column, ephemTab, i+1+(pRowid!=0), iReg+2+i); } sqlite3VtabMakeWritable(pParse, pTab); sqlite3VdbeAddOp4(v, OP_VUpdate, 0, pTab->nCol+2, iReg, pVTab, P4_VTAB); sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError); sqlite3MayAbort(pParse); sqlite3VdbeAddOp2(v, OP_Next, ephemTab, addr+1); sqlite3VdbeJumpHere(v, addr); sqlite3VdbeAddOp2(v, OP_Close, ephemTab, 0); /* Cleanup */ sqlite3SelectDelete(db, pSelect); } #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
Changes to src/vdbe.c.
︙ | ︙ | |||
2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 | */ sqlite3SetString(&p->zErrMsg, db, "cannot open savepoint - " "SQL statements in progress"); rc = SQLITE_BUSY; }else{ nName = sqlite3Strlen30(zName); /* Create a new savepoint structure. */ pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+nName+1); if( pNew ){ pNew->zName = (char *)&pNew[1]; memcpy(pNew->zName, zName, nName+1); /* If there is no open transaction, then mark this as a special | > > > > > > > > | 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 | */ sqlite3SetString(&p->zErrMsg, db, "cannot open savepoint - " "SQL statements in progress"); rc = SQLITE_BUSY; }else{ nName = sqlite3Strlen30(zName); /* This call is Ok even if this savepoint is actually a transaction ** savepoint (and therefore should not prompt xSavepoint()) callbacks. ** If this is a transaction savepoint being opened, it is guaranteed ** that the db->aVTrans[] array is empty. */ assert( db->autoCommit==0 || db->nVTrans==0 ); rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement); if( rc!=SQLITE_OK ) goto abort_due_to_error; /* Create a new savepoint structure. */ pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+nName+1); if( pNew ){ pNew->zName = (char *)&pNew[1]; memcpy(pNew->zName, zName, nName+1); /* If there is no open transaction, then mark this as a special |
︙ | ︙ | |||
2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 | sqlite3DbFree(db, pSavepoint); if( !isTransaction ){ db->nSavepoint--; } }else{ db->nDeferredCons = pSavepoint->nDeferredCons; } } } break; } /* Opcode: AutoCommit P1 P2 * * * | > > > > > | 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 | sqlite3DbFree(db, pSavepoint); if( !isTransaction ){ db->nSavepoint--; } }else{ db->nDeferredCons = pSavepoint->nDeferredCons; } if( !isTransaction ){ rc = sqlite3VtabSavepoint(db, p1, iSavepoint); if( rc!=SQLITE_OK ) goto abort_due_to_error; } } } break; } /* Opcode: AutoCommit P1 P2 * * * |
︙ | ︙ | |||
2817 2818 2819 2820 2821 2822 2823 | ){ assert( sqlite3BtreeIsInTrans(pBt) ); if( p->iStatement==0 ){ assert( db->nStatement>=0 && db->nSavepoint>=0 ); db->nStatement++; p->iStatement = db->nSavepoint + db->nStatement; } | > > > | > | 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 | ){ assert( sqlite3BtreeIsInTrans(pBt) ); if( p->iStatement==0 ){ assert( db->nStatement>=0 && db->nSavepoint>=0 ); db->nStatement++; p->iStatement = db->nSavepoint + db->nStatement; } rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement); if( rc==SQLITE_OK ){ rc = sqlite3BtreeBeginStmt(pBt, p->iStatement); } /* Store the current value of the database handles deferred constraint ** counter. If the statement transaction needs to be rolled back, ** the value of this counter needs to be restored too. */ p->nStmtDefCons = db->nDeferredCons; } } |
︙ | ︙ | |||
5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 | sqlite3_module *pModule; int nArg; int i; sqlite_int64 rowid; Mem **apArg; Mem *pX; pVtab = pOp->p4.pVtab->pVtab; pModule = (sqlite3_module *)pVtab->pModule; nArg = pOp->p2; assert( pOp->p4type==P4_VTAB ); if( ALWAYS(pModule->xUpdate) ){ apArg = p->apArg; pX = &aMem[pOp->p3]; for(i=0; i<nArg; i++){ assert( memIsValid(pX) ); memAboutToChange(p, pX); sqlite3VdbeMemStoreType(pX); apArg[i] = pX; pX++; } rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid); importVtabErrMsg(p, pVtab); if( rc==SQLITE_OK && pOp->p1 ){ assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) ); db->lastRowid = rowid; } | > > > > > > > > > > > > > | > | 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 | sqlite3_module *pModule; int nArg; int i; sqlite_int64 rowid; Mem **apArg; Mem *pX; assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace ); pVtab = pOp->p4.pVtab->pVtab; pModule = (sqlite3_module *)pVtab->pModule; nArg = pOp->p2; assert( pOp->p4type==P4_VTAB ); if( ALWAYS(pModule->xUpdate) ){ u8 vtabOnConflict = db->vtabOnConflict; apArg = p->apArg; pX = &aMem[pOp->p3]; for(i=0; i<nArg; i++){ assert( memIsValid(pX) ); memAboutToChange(p, pX); sqlite3VdbeMemStoreType(pX); apArg[i] = pX; pX++; } db->vtabOnConflict = pOp->p5; rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid); db->vtabOnConflict = vtabOnConflict; importVtabErrMsg(p, pVtab); if( rc==SQLITE_OK && pOp->p1 ){ assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) ); db->lastRowid = rowid; } if( rc==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){ if( pOp->p5==OE_Ignore ){ rc = SQLITE_OK; }else{ p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5); } }else{ p->nChange++; } } break; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifndef SQLITE_OMIT_PAGER_PRAGMAS /* Opcode: Pagecount P1 P2 * * * |
︙ | ︙ |
Changes to src/vdbeaux.c.
︙ | ︙ | |||
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 | if( rc==SQLITE_OK ){ rc = rc2; } } } db->nStatement--; p->iStatement = 0; /* If the statement transaction is being rolled back, also restore the ** database handles deferred constraint counter to the value it had when ** the statement transaction was opened. */ if( eOp==SAVEPOINT_ROLLBACK ){ db->nDeferredCons = p->nStmtDefCons; } | > > > > > > > > > | 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 | if( rc==SQLITE_OK ){ rc = rc2; } } } db->nStatement--; p->iStatement = 0; if( rc==SQLITE_OK ){ if( eOp==SAVEPOINT_ROLLBACK ){ rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint); } if( rc==SQLITE_OK ){ rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint); } } /* If the statement transaction is being rolled back, also restore the ** database handles deferred constraint counter to the value it had when ** the statement transaction was opened. */ if( eOp==SAVEPOINT_ROLLBACK ){ db->nDeferredCons = p->nStmtDefCons; } |
︙ | ︙ | |||
2925 2926 2927 2928 2929 2930 2931 | mem1.enc = pKeyInfo->enc; mem1.db = pKeyInfo->db; /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */ VVA_ONLY( mem1.zMalloc = 0; ) /* Only needed by assert() statements */ /* Compilers may complain that mem1.u.i is potentially uninitialized. ** We could initialize it, as shown here, to silence those complaints. | | | 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 | mem1.enc = pKeyInfo->enc; mem1.db = pKeyInfo->db; /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */ VVA_ONLY( mem1.zMalloc = 0; ) /* Only needed by assert() statements */ /* Compilers may complain that mem1.u.i is potentially uninitialized. ** We could initialize it, as shown here, to silence those complaints. ** But in fact, mem1.u.i will never actually be used uninitialized, and doing ** the unnecessary initialization has a measurable negative performance ** impact, since this routine is a very high runner. And so, we choose ** to ignore the compiler warnings and leave this variable uninitialized. */ /* mem1.u.i = 0; // not needed, here to silence compiler warning */ idx1 = getVarint32(aKey1, szHdr1); |
︙ | ︙ |
Changes to src/vtab.c.
︙ | ︙ | |||
10 11 12 13 14 15 16 17 18 19 20 21 22 23 | ** ************************************************************************* ** This file contains code used to help implement virtual tables. */ #ifndef SQLITE_OMIT_VIRTUALTABLE #include "sqliteInt.h" /* ** The actual function that does the work of creating a new module. ** This function implements the sqlite3_create_module() and ** sqlite3_create_module_v2() interfaces. */ static int createModule( sqlite3 *db, /* Database in which module is registered */ | > > > > > > > > > > > > | 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | ** ************************************************************************* ** This file contains code used to help implement virtual tables. */ #ifndef SQLITE_OMIT_VIRTUALTABLE #include "sqliteInt.h" /* ** Before a virtual table xCreate() or xConnect() method is invoked, the ** sqlite3.pVtabCtx member variable is set to point to an instance of ** this struct allocated on the stack. It is used by the implementation of ** the sqlite3_declare_vtab() and sqlite3_vtab_config() APIs, both of which ** are invoked only from within xCreate and xConnect methods. */ struct VtabCtx { Table *pTab; VTable *pVTable; }; /* ** The actual function that does the work of creating a new module. ** This function implements the sqlite3_create_module() and ** sqlite3_create_module_v2() interfaces. */ static int createModule( sqlite3 *db, /* Database in which module is registered */ |
︙ | ︙ | |||
38 39 40 41 42 43 44 45 46 47 48 49 50 | memcpy(zCopy, zName, nName+1); pMod->zName = zCopy; pMod->pModule = pModule; pMod->pAux = pAux; pMod->xDestroy = xDestroy; pDel = (Module *)sqlite3HashInsert(&db->aModule, zCopy, nName, (void*)pMod); if( pDel && pDel->xDestroy ){ pDel->xDestroy(pDel->pAux); } sqlite3DbFree(db, pDel); if( pDel==pMod ){ db->mallocFailed = 1; } | > < | 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 | memcpy(zCopy, zName, nName+1); pMod->zName = zCopy; pMod->pModule = pModule; pMod->pAux = pAux; pMod->xDestroy = xDestroy; pDel = (Module *)sqlite3HashInsert(&db->aModule, zCopy, nName, (void*)pMod); if( pDel && pDel->xDestroy ){ sqlite3ResetInternalSchema(db, -1); pDel->xDestroy(pDel->pAux); } sqlite3DbFree(db, pDel); if( pDel==pMod ){ db->mallocFailed = 1; } }else if( xDestroy ){ xDestroy(pAux); } rc = sqlite3ApiExit(db, SQLITE_OK); sqlite3_mutex_leave(db->mutex); return rc; } |
︙ | ︙ | |||
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 | static int vtabCallConstructor( sqlite3 *db, Table *pTab, Module *pMod, int (*xConstruct)(sqlite3*,void*,int,const char*const*,sqlite3_vtab**,char**), char **pzErr ){ VTable *pVTable; int rc; const char *const*azArg = (const char *const*)pTab->azModuleArg; int nArg = pTab->nModuleArg; char *zErr = 0; char *zModuleName = sqlite3MPrintf(db, "%s", pTab->zName); if( !zModuleName ){ return SQLITE_NOMEM; } pVTable = sqlite3DbMallocZero(db, sizeof(VTable)); if( !pVTable ){ sqlite3DbFree(db, zModuleName); return SQLITE_NOMEM; } pVTable->db = db; pVTable->pMod = pMod; | > > | | | | > | | 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 | static int vtabCallConstructor( sqlite3 *db, Table *pTab, Module *pMod, int (*xConstruct)(sqlite3*,void*,int,const char*const*,sqlite3_vtab**,char**), char **pzErr ){ VtabCtx sCtx; VTable *pVTable; int rc; const char *const*azArg = (const char *const*)pTab->azModuleArg; int nArg = pTab->nModuleArg; char *zErr = 0; char *zModuleName = sqlite3MPrintf(db, "%s", pTab->zName); if( !zModuleName ){ return SQLITE_NOMEM; } pVTable = sqlite3DbMallocZero(db, sizeof(VTable)); if( !pVTable ){ sqlite3DbFree(db, zModuleName); return SQLITE_NOMEM; } pVTable->db = db; pVTable->pMod = pMod; /* Invoke the virtual table constructor */ assert( &db->pVtabCtx ); assert( xConstruct ); sCtx.pTab = pTab; sCtx.pVTable = pVTable; db->pVtabCtx = &sCtx; rc = xConstruct(db, pMod->pAux, nArg, azArg, &pVTable->pVtab, &zErr); db->pVtabCtx = 0; if( rc==SQLITE_NOMEM ) db->mallocFailed = 1; if( SQLITE_OK!=rc ){ if( zErr==0 ){ *pzErr = sqlite3MPrintf(db, "vtable constructor failed: %s", zModuleName); }else { *pzErr = sqlite3MPrintf(db, "%s", zErr); sqlite3_free(zErr); } sqlite3DbFree(db, pVTable); }else if( ALWAYS(pVTable->pVtab) ){ /* Justification of ALWAYS(): A correct vtab constructor must allocate ** the sqlite3_vtab object if successful. */ pVTable->pVtab->pModule = pMod->pModule; pVTable->nRef = 1; if( sCtx.pTab ){ const char *zFormat = "vtable constructor did not declare schema: %s"; *pzErr = sqlite3MPrintf(db, zFormat, pTab->zName); sqlite3VtabUnlock(pVTable); rc = SQLITE_ERROR; }else{ int iCol; /* If everything went according to plan, link the new VTable structure |
︙ | ︙ | |||
518 519 520 521 522 523 524 | pTab->aCol[iCol].isHidden = 1; } } } } sqlite3DbFree(db, zModuleName); | < | 533 534 535 536 537 538 539 540 541 542 543 544 545 546 | pTab->aCol[iCol].isHidden = 1; } } } } sqlite3DbFree(db, zModuleName); return rc; } /* ** This function is invoked by the parser to call the xConnect() method ** of the virtual table pTab. If an error occurs, an error code is returned ** and an error left in pParse. |
︙ | ︙ | |||
638 639 640 641 642 643 644 | Parse *pParse; int rc = SQLITE_OK; Table *pTab; char *zErr = 0; sqlite3_mutex_enter(db->mutex); | | < | 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 | Parse *pParse; int rc = SQLITE_OK; Table *pTab; char *zErr = 0; sqlite3_mutex_enter(db->mutex); if( !db->pVtabCtx || !(pTab = db->pVtabCtx->pTab) ){ sqlite3Error(db, SQLITE_MISUSE, 0); sqlite3_mutex_leave(db->mutex); return SQLITE_MISUSE_BKPT; } assert( (pTab->tabFlags & TF_Virtual)!=0 ); pParse = sqlite3StackAllocZero(db, sizeof(*pParse)); |
︙ | ︙ | |||
666 667 668 669 670 671 672 | ){ if( !pTab->aCol ){ pTab->aCol = pParse->pNewTable->aCol; pTab->nCol = pParse->pNewTable->nCol; pParse->pNewTable->nCol = 0; pParse->pNewTable->aCol = 0; } | | | 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 | ){ if( !pTab->aCol ){ pTab->aCol = pParse->pNewTable->aCol; pTab->nCol = pParse->pNewTable->nCol; pParse->pNewTable->nCol = 0; pParse->pNewTable->aCol = 0; } db->pVtabCtx->pTab = 0; }else{ sqlite3Error(db, SQLITE_ERROR, (zErr ? "%s" : 0), zErr); sqlite3DbFree(db, zErr); rc = SQLITE_ERROR; } pParse->declareVtab = 0; |
︙ | ︙ | |||
818 819 820 821 822 823 824 | return SQLITE_OK; } pModule = pVTab->pVtab->pModule; if( pModule->xBegin ){ int i; | < > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 | return SQLITE_OK; } pModule = pVTab->pVtab->pModule; if( pModule->xBegin ){ int i; /* If pVtab is already in the aVTrans array, return early */ for(i=0; i<db->nVTrans; i++){ if( db->aVTrans[i]==pVTab ){ return SQLITE_OK; } } /* Invoke the xBegin method */ rc = pModule->xBegin(pVTab->pVtab); if( rc==SQLITE_OK ){ rc = addToVTrans(db, pVTab); } } return rc; } /* ** Invoke either the xSavepoint, xRollbackTo or xRelease method of all ** virtual tables that currently have an open transaction. Pass iSavepoint ** as the second argument to the virtual table method invoked. ** ** If op is SAVEPOINT_BEGIN, the xSavepoint method is invoked. If it is ** SAVEPOINT_ROLLBACK, the xRollbackTo method. Otherwise, if op is ** SAVEPOINT_RELEASE, then the xRelease method of each virtual table with ** an open transaction is invoked. ** ** If any virtual table method returns an error code other than SQLITE_OK, ** processing is abandoned and the error returned to the caller of this ** function immediately. If all calls to virtual table methods are successful, ** SQLITE_OK is returned. */ int sqlite3VtabSavepoint(sqlite3 *db, int op, int iSavepoint){ int rc = SQLITE_OK; assert( op==SAVEPOINT_RELEASE||op==SAVEPOINT_ROLLBACK||op==SAVEPOINT_BEGIN ); if( db->aVTrans ){ int i; for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){ const sqlite3_module *pMod = db->aVTrans[i]->pMod->pModule; if( pMod->iVersion>=1 ){ int (*xMethod)(sqlite3_vtab *, int); switch( op ){ case SAVEPOINT_BEGIN: xMethod = pMod->xSavepoint; break; case SAVEPOINT_ROLLBACK: xMethod = pMod->xRollbackTo; break; default: xMethod = pMod->xRelease; break; } if( xMethod ) rc = xMethod(db->aVTrans[i]->pVtab, iSavepoint); } } } return rc; } /* ** The first parameter (pDef) is a function implementation. The ** second parameter (pExpr) is the first argument to this function. |
︙ | ︙ | |||
932 933 934 935 936 937 938 939 940 | if( apVtabLock ){ pToplevel->apVtabLock = apVtabLock; pToplevel->apVtabLock[pToplevel->nVtabLock++] = pTab; }else{ pToplevel->db->mallocFailed = 1; } } #endif /* SQLITE_OMIT_VIRTUALTABLE */ | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 | if( apVtabLock ){ pToplevel->apVtabLock = apVtabLock; pToplevel->apVtabLock[pToplevel->nVtabLock++] = pTab; }else{ pToplevel->db->mallocFailed = 1; } } /* ** Return the ON CONFLICT resolution mode in effect for the virtual ** table update operation currently in progress. ** ** The results of this routine are undefined unless it is called from ** within an xUpdate method. */ int sqlite3_vtab_on_conflict(sqlite3 *db){ static const unsigned char aMap[] = { SQLITE_ROLLBACK, SQLITE_IGNORE, SQLITE_ABORT, SQLITE_FAIL, SQLITE_REPLACE }; assert( OE_Rollback==1 && OE_Abort==2 && OE_Fail==3 ); assert( OE_Ignore==4 && OE_Replace==5 ); assert( db->vtabOnConflict>=1 && db->vtabOnConflict<=5 ); return (int)aMap[db->vtabOnConflict-1]; } /* ** Call from within the xCreate() or xConnect() methods to provide ** the SQLite core with additional information about the behavior ** of the virtual table being implemented. */ int sqlite3_vtab_config(sqlite3 *db, int op, ...){ va_list ap; int rc = SQLITE_OK; sqlite3_mutex_enter(db->mutex); va_start(ap, op); switch( op ){ case SQLITE_VTAB_CONSTRAINT_SUPPORT: { VtabCtx *p = db->pVtabCtx; if( !p ){ rc = SQLITE_MISUSE_BKPT; }else{ assert( (p->pTab->tabFlags & TF_Virtual)!=0 ); p->pVTable->bConstraint = (u8)va_arg(ap, int); } break; } default: rc = SQLITE_MISUSE_BKPT; break; } va_end(ap); if( rc!=SQLITE_OK ) sqlite3Error(db, rc, 0); sqlite3_mutex_leave(db->mutex); return rc; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
Changes to test/e_createtable.test.
︙ | ︙ | |||
985 986 987 988 989 990 991 | SELECT quote(a), quote(b) FROM t6; } {1 2 'X' 3} do_execsql_test e_createtable-3.7.4 { INSERT INTO t6(a) SELECT a FROM t6; SELECT quote(a), quote(b) FROM t6; } {1 2 'X' 3 1 4 'X' 5} | | | | | 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 | SELECT quote(a), quote(b) FROM t6; } {1 2 'X' 3} do_execsql_test e_createtable-3.7.4 { INSERT INTO t6(a) SELECT a FROM t6; SELECT quote(a), quote(b) FROM t6; } {1 2 'X' 3 1 4 'X' 5} # EVIDENCE-OF: R-15363-55230 If the default value of a column is # CURRENT_TIME, CURRENT_DATE or CURRENT_TIMESTAMP, then the value used # in the new row is a text representation of the current UTC date and/or # time. # # This is difficult to test literally without knowing what time the # user will run the tests. Instead, we test that the three cases # above set the value to the current date and/or time according to # the xCurrentTime() method of the VFS. Which is usually the same # as UTC. In this case, however, we instrument it to always return |
︙ | ︙ |
Changes to test/fts3atoken.test.
︙ | ︙ | |||
20 21 22 23 24 25 26 27 28 29 30 31 32 33 | # If SQLITE_ENABLE_FTS3 is defined, omit this file. ifcapable !fts3 { finish_test return } proc escape_string {str} { set out "" foreach char [split $str ""] { scan $char %c i if {$i<=127} { append out $char } else { | > > | 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | # If SQLITE_ENABLE_FTS3 is defined, omit this file. ifcapable !fts3 { finish_test return } set ::testprefix fts3token proc escape_string {str} { set out "" foreach char [split $str ""] { scan $char %c i if {$i<=127} { append out $char } else { |
︙ | ︙ | |||
161 162 163 164 165 166 167 | append output "1 tokens tokens " append output "2 then then " append output "3 [string tolower $longtoken] $longtoken" do_icu_test fts3token-4.6 MiddleOfTheOcean $input $output do_icu_test fts3token-4.7 th_TH $input $output do_icu_test fts3token-4.8 en_US $input $output | | > > > > > > > > > > > | 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 | append output "1 tokens tokens " append output "2 then then " append output "3 [string tolower $longtoken] $longtoken" do_icu_test fts3token-4.6 MiddleOfTheOcean $input $output do_icu_test fts3token-4.7 th_TH $input $output do_icu_test fts3token-4.8 en_US $input $output do_execsql_test 5.1 { CREATE VIRTUAL TABLE x1 USING fts3(name,TOKENIZE icu en_US); insert into x1 (name) values (NULL); insert into x1 (name) values (NULL); delete from x1; } } do_test fts3token-internal { execsql { SELECT fts3_tokenizer_internal_test() } } {ok} finish_test |
Changes to test/fts3aux1.test.
︙ | ︙ | |||
34 35 36 37 38 39 40 | INSERT INTO t1 VALUES('one one one three three three'); SELECT term, documents, occurrences FROM terms WHERE col = '*'; } { five 2 2 four 2 2 one 3 5 seven 1 1 six 1 1 three 4 6 two 1 1 } | | | < > | 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | INSERT INTO t1 VALUES('one one one three three three'); SELECT term, documents, occurrences FROM terms WHERE col = '*'; } { five 2 2 four 2 2 one 3 5 seven 1 1 six 1 1 three 4 6 two 1 1 } do_execsql_test 1.3.1 { DELETE FROM t1; } do_execsql_test 1.3.2 { SELECT term, documents, occurrences FROM terms WHERE col = '*'; } do_execsql_test 1.4 { INSERT INTO t1 VALUES('a b a b a b a'); INSERT INTO t1 SELECT * FROM t1; INSERT INTO t1 SELECT * FROM t1; INSERT INTO t1 SELECT * FROM t1; INSERT INTO t1 SELECT * FROM t1; |
︙ | ︙ |
Added test/fts3conf.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 | # 2011 April 25 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #************************************************************************* # This file implements regression tests for SQLite library. The # focus of this script is testing the FTS3 module. set testdir [file dirname $argv0] source $testdir/tester.tcl set testprefix fts3conf # If SQLITE_ENABLE_FTS3 is defined, omit this file. ifcapable !fts3 { finish_test return } proc fts3_integrity {tn db tbl} { if {[sqlite3_get_autocommit $db]==0} { error "fts3_integrity does not work with an open transaction" } set sql [db one {SELECT sql FROM sqlite_master WHERE name = $tbl}] regexp -nocase {[^(]* using (.*)} $sql -> tail set cols [list] $db eval "PRAGMA table_info($tbl)" { lappend cols $name } set cols [join [concat docid $cols] ,] $db eval [subst { CREATE VIRTUAL TABLE fts3check USING fts4term($tbl); CREATE VIRTUAL TABLE temp.fts3check2 USING $tail; INSERT INTO temp.fts3check2($cols) SELECT docid, * FROM $tbl; CREATE VIRTUAL TABLE temp.fts3check3 USING fts4term(fts3check2); }] set m1 [$db one {SELECT md5sum(term, docid, col, pos) FROM fts3check}] set m2 [$db one {SELECT md5sum(term, docid, col, pos) FROM fts3check3}] $db eval { DROP TABLE fts3check; DROP TABLE temp.fts3check2; DROP TABLE temp.fts3check3; } uplevel [list do_test $tn [list set {} $m1] $m2] } do_execsql_test 1.0.1 { CREATE VIRTUAL TABLE t1 USING fts3(x); INSERT INTO t1(rowid, x) VALUES(1, 'a b c d'); INSERT INTO t1(rowid, x) VALUES(2, 'e f g h'); CREATE TABLE source(a, b); INSERT INTO source VALUES(4, 'z'); INSERT INTO source VALUES(2, 'y'); } db_save_and_close set T1 "INTO t1(rowid, x) VALUES(1, 'x')" set T2 "INTO t1(rowid, x) SELECT * FROM source" set T3 "t1 SET docid = 2 WHERE docid = 1" set T4 "t1 SET docid = CASE WHEN docid = 1 THEN 4 ELSE 3 END WHERE docid <=2" foreach {tn sql uses constraint data} [subst { 1 "INSERT OR ROLLBACK $T1" 0 1 {{a b c d} {e f g h}} 2 "INSERT OR ABORT $T1" 0 1 {{a b c d} {e f g h} {i j k l}} 3 "INSERT OR FAIL $T1" 0 1 {{a b c d} {e f g h} {i j k l}} 4 "INSERT OR IGNORE $T1" 0 0 {{a b c d} {e f g h} {i j k l}} 5 "INSERT OR REPLACE $T1" 0 0 {x {e f g h} {i j k l}} 6 "INSERT OR ROLLBACK $T2" 1 1 {{a b c d} {e f g h}} 7 "INSERT OR ABORT $T2" 1 1 {{a b c d} {e f g h} {i j k l}} 8 "INSERT OR FAIL $T2" 1 1 {{a b c d} {e f g h} {i j k l} z} 9 "INSERT OR IGNORE $T2" 1 0 {{a b c d} {e f g h} {i j k l} z} 10 "INSERT OR REPLACE $T2" 1 0 {{a b c d} y {i j k l} z} 11 "UPDATE OR ROLLBACK $T3" 1 1 {{a b c d} {e f g h}} 12 "UPDATE OR ABORT $T3" 1 1 {{a b c d} {e f g h} {i j k l}} 13 "UPDATE OR FAIL $T3" 1 1 {{a b c d} {e f g h} {i j k l}} 14 "UPDATE OR IGNORE $T3" 1 0 {{a b c d} {e f g h} {i j k l}} 15 "UPDATE OR REPLACE $T3" 1 0 {{a b c d} {i j k l}} 16 "UPDATE OR ROLLBACK $T4" 1 1 {{a b c d} {e f g h}} 17 "UPDATE OR ABORT $T4" 1 1 {{a b c d} {e f g h} {i j k l}} 18 "UPDATE OR FAIL $T4" 1 1 {{e f g h} {i j k l} {a b c d}} 19 "UPDATE OR IGNORE $T4" 1 0 {{e f g h} {i j k l} {a b c d}} 20 "UPDATE OR REPLACE $T4" 1 0 {{e f g h} {a b c d}} }] { db_restore_and_reopen execsql { BEGIN; INSERT INTO t1(rowid, x) VALUES(3, 'i j k l'); } set R(0) {0 {}} set R(1) {1 {constraint failed}} do_catchsql_test 1.$tn.1 $sql $R($constraint) do_catchsql_test 1.$tn.2 { SELECT * FROM t1 } [list 0 $data] catchsql COMMIT fts3_integrity 1.$tn.3 db t1 do_test 1.$tn.4 [list sql_uses_stmt db $sql] $uses } do_execsql_test 2.1.1 { DELETE FROM t1; BEGIN; INSERT INTO t1 VALUES('a b c'); SAVEPOINT a; INSERT INTO t1 VALUES('x y z'); ROLLBACK TO a; COMMIT; } fts3_integrity 2.1.2 db t1 do_catchsql_test 2.2.1 { DELETE FROM t1; BEGIN; INSERT INTO t1(docid, x) VALUES(0, 'a b c'); INSERT INTO t1(docid, x) VALUES(1, 'a b c'); REPLACE INTO t1(docid, x) VALUES('zero', 'd e f'); } {1 {datatype mismatch}} do_execsql_test 2.2.2 { COMMIT } do_execsql_test 2.2.3 { SELECT * FROM t1 } {{a b c} {a b c}} fts3_integrity 2.2.4 db t1 finish_test |
Added test/fts3sort.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 | # 2011 May 04 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #************************************************************************* # This file implements regression tests for SQLite library. The # focus of this script is testing the FTS3 module. # set testdir [file dirname $argv0] source $testdir/tester.tcl # If SQLITE_ENABLE_FTS3 is defined, omit this file. ifcapable !fts3 { finish_test return } set testprefix fts3sort proc build_database {nRow} { db close forcedelete test.db sqlite3 db test.db set vocab [list aa ab ac ba bb bc ca cb cc da] expr srand(0) execsql { CREATE VIRTUAL TABLE t1 USING fts4 } for {set i 0} {$i < $nRow} {incr i} { set v [expr int(rand()*1000000)] set doc [list] for {set div 1} {$div < 1000000} {set div [expr $div*10]} { lappend doc [lindex $vocab [expr ($v/$div) % 10]] } execsql { INSERT INTO t1 VALUES($doc) } } } set nRow 1000 do_test 1.0 { build_database $nRow execsql { SELECT count(*) FROM t1 } } $nRow foreach {tn query} { 1 "SELECT docid, * FROM t1" 2 "SELECT docid, * FROM t1 WHERE t1 MATCH 'aa'" 3 "SELECT docid, * FROM t1 WHERE t1 MATCH 'a*'" 4 "SELECT docid, quote(matchinfo(t1)) FROM t1 WHERE t1 MATCH 'a*'" 5 "SELECT docid, quote(matchinfo(t1,'pcnxals')) FROM t1 WHERE t1 MATCH 'b*'" 6 "SELECT docid, * FROM t1 WHERE t1 MATCH 'a* b* c*'" 7 "SELECT docid, * FROM t1 WHERE t1 MATCH 'aa OR da'" 8 "SELECT docid, * FROM t1 WHERE t1 MATCH 'nosuchtoken'" 9 "SELECT docid, snippet(t1) FROM t1 WHERE t1 MATCH 'aa OR da'" 10 "SELECT docid, snippet(t1) FROM t1 WHERE t1 MATCH 'aa OR nosuchtoken'" } { unset -nocomplain A B C D set A_list [list] set B_list [list] set C_list [list] set D_list [list] unset -nocomplain X db eval "$query ORDER BY rowid ASC" X { set A($X(docid)) [array get X] lappend A_list $X(docid) } unset -nocomplain X db eval "$query ORDER BY rowid DESC" X { set B($X(docid)) [array get X] lappend B_list $X(docid) } unset -nocomplain X db eval "$query ORDER BY docid ASC" X { set C($X(docid)) [array get X] lappend C_list $X(docid) } unset -nocomplain X db eval "$query ORDER BY docid DESC" X { set D($X(docid)) [array get X] lappend D_list $X(docid) } do_test 1.$tn.1 { set A_list } [lsort -integer -increasing $A_list] do_test 1.$tn.2 { set B_list } [lsort -integer -decreasing $B_list] do_test 1.$tn.3 { set C_list } [lsort -integer -increasing $C_list] do_test 1.$tn.4 { set D_list } [lsort -integer -decreasing $D_list] unset -nocomplain DATA unset -nocomplain X db eval "$query" X { set DATA($X(docid)) [array get X] } do_test 1.$tn.5 { lsort [array get A] } [lsort [array get DATA]] do_test 1.$tn.6 { lsort [array get B] } [lsort [array get DATA]] do_test 1.$tn.7 { lsort [array get C] } [lsort [array get DATA]] do_test 1.$tn.8 { lsort [array get D] } [lsort [array get DATA]] } finish_test |
Changes to test/insert4.test.
︙ | ︙ | |||
321 322 323 324 325 326 327 328 329 | DROP TABLE t6b; CREATE TABLE t6b(x CHECK( x COLLATE nocase <>'abc' )); } catchsql { INSERT INTO t6b SELECT * FROM t6a; } } {1 {constraint failed}} finish_test | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 | DROP TABLE t6b; CREATE TABLE t6b(x CHECK( x COLLATE nocase <>'abc' )); } catchsql { INSERT INTO t6b SELECT * FROM t6a; } } {1 {constraint failed}} # Ticket [6284df89debdfa61db8073e062908af0c9b6118e] # Disable the xfer optimization if the destination table contains # a foreign key constraint # ifcapable foreignkey { do_test insert4-7.1 { set ::sqlite3_xferopt_count 0 execsql { CREATE TABLE t7a(x INTEGER PRIMARY KEY); INSERT INTO t7a VALUES(123); CREATE TABLE t7b(y INTEGER REFERENCES t7a); CREATE TABLE t7c(z INT); INSERT INTO t7c VALUES(234); INSERT INTO t7b SELECT * FROM t7c; SELECT * FROM t7b; } } {234} do_test insert4-7.2 { set ::sqlite3_xferopt_count } {1} do_test insert4-7.3 { set ::sqlite3_xferopt_count 0 execsql { DELETE FROM t7b; PRAGMA foreign_keys=ON; } catchsql { INSERT INTO t7b SELECT * FROM t7c; } } {1 {foreign key constraint failed}} do_test insert4-7.4 { execsql {SELECT * FROM t7b} } {} do_test insert4-7.5 { set ::sqlite3_xferopt_count } {0} do_test insert4-7.6 { set ::sqlite3_xferopt_count 0 execsql { DELETE FROM t7b; DELETE FROM t7c; INSERT INTO t7c VALUES(123); INSERT INTO t7b SELECT * FROM t7c; SELECT * FROM t7b; } } {123} do_test insert4-7.7 { set ::sqlite3_xferopt_count } {0} do_test insert4-7.7 { set ::sqlite3_xferopt_count 0 execsql { PRAGMA foreign_keys=OFF; DELETE FROM t7b; INSERT INTO t7b SELECT * FROM t7c; SELECT * FROM t7b; } } {123} do_test insert4-7.8 { set ::sqlite3_xferopt_count } {1} } finish_test |
Changes to test/quota.test.
︙ | ︙ | |||
198 199 200 201 202 203 204 205 206 207 208 209 210 211 | do_test quota-3.2.9 { catchsql { INSERT INTO t1 VALUES(randomblob(500), randomblob(500)) } db2b } {1 {database or disk is full}} set ::quota [list] proc quota_callback {file limitvar size} { upvar $limitvar limit lappend ::quota $file $size set limit 0 } sqlite3_quota_set * 4096 quota_callback do_test quota-3.3.1 { execsql { INSERT INTO t1 VALUES(randomblob(500), randomblob(500)) } db1a execsql { INSERT INTO t1 VALUES(randomblob(500), randomblob(500)) } db1b | > > > | 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 | do_test quota-3.2.9 { catchsql { INSERT INTO t1 VALUES(randomblob(500), randomblob(500)) } db2b } {1 {database or disk is full}} set ::quota [list] proc quota_callback {file limitvar size} { upvar $limitvar limit if {$::tcl_platform(platform)=="windows"} { set file [ lindex [string map {\\ \/} $file] 0 ] } lappend ::quota $file $size set limit 0 } sqlite3_quota_set * 4096 quota_callback do_test quota-3.3.1 { execsql { INSERT INTO t1 VALUES(randomblob(500), randomblob(500)) } db1a execsql { INSERT INTO t1 VALUES(randomblob(500), randomblob(500)) } db1b |
︙ | ︙ |
Changes to test/sync.test.
︙ | ︙ | |||
15 16 17 18 19 20 21 | # # $Id: sync.test,v 1.6 2007/10/09 08:29:33 danielk1977 Exp $ set testdir [file dirname $argv0] source $testdir/tester.tcl # | | | > > > > > > > | | < > > < | < < | < < | < | 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 | # # $Id: sync.test,v 1.6 2007/10/09 08:29:33 danielk1977 Exp $ set testdir [file dirname $argv0] source $testdir/tester.tcl # # These tests are only applicable when pager pragma are # enabled. Also, since every test uses an ATTACHed database, they # are only run when ATTACH is enabled. # ifcapable !pager_pragmas||!attach { finish_test return } set sqlite_sync_count 0 proc cond_incr_sync_count {adj} { global sqlite_sync_count if {$::tcl_platform(platform) == "windows"} { incr sqlite_sync_count $adj } { ifcapable !dirsync { incr sqlite_sync_count $adj } } } do_test sync-1.1 { set sqlite_sync_count 0 file delete -force test2.db file delete -force test2.db-journal execsql { PRAGMA fullfsync=OFF; CREATE TABLE t1(a,b); ATTACH DATABASE 'test2.db' AS db2; CREATE TABLE db2.t2(x,y); } cond_incr_sync_count 2 set sqlite_sync_count } 8 ifcapable pager_pragmas { do_test sync-1.2 { set sqlite_sync_count 0 execsql { PRAGMA main.synchronous=on; PRAGMA db2.synchronous=on; BEGIN; INSERT INTO t1 VALUES(1,2); INSERT INTO t2 VALUES(3,4); COMMIT; } cond_incr_sync_count 3 set sqlite_sync_count } 8 } do_test sync-1.3 { set sqlite_sync_count 0 execsql { PRAGMA main.synchronous=full; PRAGMA db2.synchronous=full; BEGIN; INSERT INTO t1 VALUES(3,4); INSERT INTO t2 VALUES(5,6); COMMIT; } cond_incr_sync_count 3 set sqlite_sync_count } 10 ifcapable pager_pragmas { do_test sync-1.4 { set sqlite_sync_count 0 execsql { PRAGMA main.synchronous=off; |
︙ | ︙ |
Changes to test/tester.tcl.
︙ | ︙ | |||
747 748 749 750 751 752 753 754 755 756 757 758 759 760 | # proc integrity_check {name {db db}} { ifcapable integrityck { do_test $name [list execsql {PRAGMA integrity_check} $db] {ok} } } proc fix_ifcapable_expr {expr} { set ret "" set state 0 for {set i 0} {$i < [string length $expr]} {incr i} { set char [string range $expr $i $i] set newstate [expr {[string is alnum $char] || $char eq "_"}] if {$newstate && !$state} { | > > > > > > > > > > > | 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 | # proc integrity_check {name {db db}} { ifcapable integrityck { do_test $name [list execsql {PRAGMA integrity_check} $db] {ok} } } # Return true if the SQL statement passed as the second argument uses a # statement transaction. # proc sql_uses_stmt {db sql} { set stmt [sqlite3_prepare $db $sql -1 dummy] set uses [uses_stmt_journal $stmt] sqlite3_finalize $stmt return $uses } proc fix_ifcapable_expr {expr} { set ret "" set state 0 for {set i 0} {$i < [string length $expr]} {incr i} { set char [string range $expr $i $i] set newstate [expr {[string is alnum $char] || $char eq "_"}] if {$newstate && !$state} { |
︙ | ︙ |
Changes to test/triggerC.test.
︙ | ︙ | |||
242 243 244 245 246 247 248 | INSERT INTO t22 VALUES(1); SELECT count(*) FROM t22; } } {100} do_test triggerC-2.3 { | | | < > | | 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 | INSERT INTO t22 VALUES(1); SELECT count(*) FROM t22; } } {100} do_test triggerC-2.3 { execsql " CREATE TABLE t23(x PRIMARY KEY); CREATE TRIGGER t23a AFTER INSERT ON t23 BEGIN INSERT INTO t23 VALUES(new.x + 1); END; CREATE TRIGGER t23b BEFORE INSERT ON t23 BEGIN SELECT CASE WHEN new.x>[expr $SQLITE_MAX_TRIGGER_DEPTH / 2] THEN RAISE(IGNORE) ELSE NULL END; END; INSERT INTO t23 VALUES(1); SELECT count(*) FROM t23; " } [list [expr $SQLITE_MAX_TRIGGER_DEPTH / 2]] #----------------------------------------------------------------------- # This block of tests, triggerC-3.*, test that SQLite throws an exception # when it detects excessive recursion. # do_test triggerC-3.1.1 { |
︙ | ︙ | |||
284 285 286 287 288 289 290 | catchsql { INSERT INTO t3 VALUES(0,0) } } {1 {too many levels of trigger recursion}} do_test triggerC-3.1.3 { execsql { SELECT * FROM t3 } } {} do_test triggerC-3.2.1 { | | | < > | | < > | | | < > | | | < > | | | < > | | < > | | | < > | | | 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 | catchsql { INSERT INTO t3 VALUES(0,0) } } {1 {too many levels of trigger recursion}} do_test triggerC-3.1.3 { execsql { SELECT * FROM t3 } } {} do_test triggerC-3.2.1 { execsql " CREATE TABLE t3b(x); CREATE TRIGGER t3bi AFTER INSERT ON t3b WHEN new.x<[expr $SQLITE_MAX_TRIGGER_DEPTH * 2] BEGIN INSERT INTO t3b VALUES(new.x+1); END; " catchsql { INSERT INTO t3b VALUES(1); } } {1 {too many levels of trigger recursion}} do_test triggerC-3.2.2 { db eval {SELECT * FROM t3b} } {} do_test triggerC-3.3.1 { catchsql " INSERT INTO t3b VALUES([expr $SQLITE_MAX_TRIGGER_DEPTH + 1]); " } {0 {}} do_test triggerC-3.3.2 { db eval {SELECT count(*), max(x), min(x) FROM t3b} } [list $SQLITE_MAX_TRIGGER_DEPTH [expr $SQLITE_MAX_TRIGGER_DEPTH * 2] [expr $SQLITE_MAX_TRIGGER_DEPTH + 1]] do_test triggerC-3.4.1 { catchsql " DELETE FROM t3b; INSERT INTO t3b VALUES([expr $SQLITE_MAX_TRIGGER_DEPTH - 1]); " } {1 {too many levels of trigger recursion}} do_test triggerC-3.4.2 { db eval {SELECT count(*), max(x), min(x) FROM t3b} } {0 {} {}} do_test triggerC-3.5.1 { sqlite3_limit db SQLITE_LIMIT_TRIGGER_DEPTH [expr $SQLITE_MAX_TRIGGER_DEPTH / 10] catchsql " INSERT INTO t3b VALUES([expr ($SQLITE_MAX_TRIGGER_DEPTH * 2) - ($SQLITE_MAX_TRIGGER_DEPTH / 10) + 1]); " } {0 {}} do_test triggerC-3.5.2 { db eval {SELECT count(*), max(x), min(x) FROM t3b} } [list [expr $SQLITE_MAX_TRIGGER_DEPTH / 10] [expr $SQLITE_MAX_TRIGGER_DEPTH * 2] [expr ($SQLITE_MAX_TRIGGER_DEPTH * 2) - ($SQLITE_MAX_TRIGGER_DEPTH / 10) + 1]] do_test triggerC-3.5.3 { catchsql " DELETE FROM t3b; INSERT INTO t3b VALUES([expr ($SQLITE_MAX_TRIGGER_DEPTH * 2) - ($SQLITE_MAX_TRIGGER_DEPTH / 10)]); " } {1 {too many levels of trigger recursion}} do_test triggerC-3.5.4 { db eval {SELECT count(*), max(x), min(x) FROM t3b} } {0 {} {}} do_test triggerC-3.6.1 { sqlite3_limit db SQLITE_LIMIT_TRIGGER_DEPTH 1 catchsql " INSERT INTO t3b VALUES([expr $SQLITE_MAX_TRIGGER_DEPTH * 2]); " } {0 {}} do_test triggerC-3.6.2 { db eval {SELECT count(*), max(x), min(x) FROM t3b} } [list 1 [expr $SQLITE_MAX_TRIGGER_DEPTH * 2] [expr $SQLITE_MAX_TRIGGER_DEPTH * 2]] do_test triggerC-3.6.3 { catchsql " DELETE FROM t3b; INSERT INTO t3b VALUES([expr ($SQLITE_MAX_TRIGGER_DEPTH * 2) - 1]); " } {1 {too many levels of trigger recursion}} do_test triggerC-3.6.4 { db eval {SELECT count(*), max(x), min(x) FROM t3b} } {0 {} {}} sqlite3_limit db SQLITE_LIMIT_TRIGGER_DEPTH $SQLITE_MAX_TRIGGER_DEPTH #----------------------------------------------------------------------- # This next block of tests, triggerC-4.*, checks that affinity # transformations and constraint processing is performed at the correct # times relative to BEFORE and AFTER triggers. # # For an INSERT statement, for each row to be inserted: |
︙ | ︙ |
Changes to test/unordered.test.
︙ | ︙ | |||
53 54 55 56 57 58 59 60 61 62 63 64 65 | 5 "SELECT group_concat(b) FROM t1 GROUP BY a" {0 0 0 {SCAN TABLE t1 USING INDEX i1 (~128 rows)}} {0 0 0 {SCAN TABLE t1 (~128 rows)} 0 0 0 {USE TEMP B-TREE FOR GROUP BY}} 6 "SELECT * FROM t1 WHERE a = ?" {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?) (~1 rows)}} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?) (~1 rows)}} } { do_eqp_test 1.$idxmode.$tn $sql $r($idxmode) } } finish_test | > > > | 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 | 5 "SELECT group_concat(b) FROM t1 GROUP BY a" {0 0 0 {SCAN TABLE t1 USING INDEX i1 (~128 rows)}} {0 0 0 {SCAN TABLE t1 (~128 rows)} 0 0 0 {USE TEMP B-TREE FOR GROUP BY}} 6 "SELECT * FROM t1 WHERE a = ?" {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?) (~1 rows)}} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?) (~1 rows)}} 7 "SELECT count(*) FROM t1" {0 0 0 {SCAN TABLE t1 USING COVERING INDEX i1(~128 rows)}} {0 0 0 {SCAN TABLE t1 (~128 rows)}} } { do_eqp_test 1.$idxmode.$tn $sql $r($idxmode) } } finish_test |
Changes to test/wal2.test.
︙ | ︙ | |||
22 23 24 25 26 27 28 29 30 31 32 33 34 35 | set testprefix wal2 ifcapable !wal {finish_test ; return } if { ![wal_is_ok] || [path_is_dos "."]} { finish_test return } proc set_tvfs_hdr {file args} { # Set $nHdr to the number of bytes in the wal-index header: set nHdr 48 set nInt [expr {$nHdr/4}] | > > > > > > > > > > > > | 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 | set testprefix wal2 ifcapable !wal {finish_test ; return } if { ![wal_is_ok] || [path_is_dos "."]} { finish_test return } set sqlite_sync_count 0 proc cond_incr_sync_count {adj} { global sqlite_sync_count if {$::tcl_platform(platform) == "windows"} { incr sqlite_sync_count $adj } { ifcapable !dirsync { incr sqlite_sync_count $adj } } } proc set_tvfs_hdr {file args} { # Set $nHdr to the number of bytes in the wal-index header: set nHdr 48 set nInt [expr {$nHdr/4}] |
︙ | ︙ | |||
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 | INSERT INTO t1 VALUES(3, 4); INSERT INTO t1 VALUES(5, 6); COMMIT; -- 1 wal sync PRAGMA wal_checkpoint; -- 1 wal sync, 1 db sync } {10 0 5 5 0 2 2} do_test wal2-14.$tn.3 { list $sqlite_sync_count $sqlite_fullsync_count } [lrange $reslist 0 1] set sqlite_sync_count 0 set sqlite_fullsync_count 0 do_test wal2-14.$tn.4 { | > | 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 | INSERT INTO t1 VALUES(3, 4); INSERT INTO t1 VALUES(5, 6); COMMIT; -- 1 wal sync PRAGMA wal_checkpoint; -- 1 wal sync, 1 db sync } {10 0 5 5 0 2 2} do_test wal2-14.$tn.3 { cond_incr_sync_count 1 list $sqlite_sync_count $sqlite_fullsync_count } [lrange $reslist 0 1] set sqlite_sync_count 0 set sqlite_fullsync_count 0 do_test wal2-14.$tn.4 { |
︙ | ︙ |
Added tool/getlock.c.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 | /* ** This utility program looks at an SQLite database and determines whether ** or not it is locked, the kind of lock, and who is holding this lock. ** ** This only works on unix when the posix advisory locking method is used ** (which is the default on unix) and when the PENDING_BYTE is in its ** usual place. */ #include <sys/types.h> #include <sys/stat.h> #include <unistd.h> #include <fcntl.h> #include <string.h> #include <stdio.h> #include <stdlib.h> #include <errno.h> static void usage(const char *argv0){ fprintf(stderr, "Usage: %s database\n", argv0); exit(1); } /* Check for a conflicting lock. If one is found, print an this ** on standard output using the format string given and return 1. ** If there are no conflicting locks, return 0. */ static int isLocked( int h, /* File descriptor to check */ int type, /* F_RDLCK or F_WRLCK */ unsigned int iOfst, /* First byte of the lock */ unsigned int iCnt, /* Number of bytes in the lock range */ const char *zType /* Type of lock */ ){ struct flock lk; memset(&lk, 0, sizeof(lk)); lk.l_type = type; lk.l_whence = SEEK_SET; lk.l_start = iOfst; lk.l_len = iCnt; if( fcntl(h, F_GETLK, &lk)==(-1) ){ fprintf(stderr, "fcntl(%d) failed: errno=%d\n", h, errno); exit(1); } if( lk.l_type==F_UNLCK ) return 0; printf("%s lock held by %d\n", zType, (int)lk.l_pid); return 1; } /* ** Location of locking bytes in the database file */ #define PENDING_BYTE (0x40000000) #define RESERVED_BYTE (PENDING_BYTE+1) #define SHARED_FIRST (PENDING_BYTE+2) #define SHARED_SIZE 510 /* ** Lock locations for shared-memory locks used by WAL mode. */ #define SHM_BASE 120 #define SHM_WRITE SHM_BASE #define SHM_CHECKPOINT (SHM_BASE+1) #define SHM_RECOVER (SHM_BASE+2) #define SHM_READ_FIRST (SHM_BASE+3) #define SHM_READ_SIZE 5 int main(int argc, char **argv){ int hDb; /* File descriptor for the open database file */ int hShm; /* File descriptor for WAL shared-memory file */ char *zShm; /* Name of the shared-memory file for WAL mode */ ssize_t got; /* Bytes read from header */ int isWal; /* True if in WAL mode */ int nName; /* Length of filename */ unsigned char aHdr[100]; /* Database header */ int nLock = 0; /* Number of locks held */ int i; /* Loop counter */ if( argc!=2 ) usage(argv[0]); hDb = open(argv[1], O_RDONLY, 0); if( hDb<0 ){ fprintf(stderr, "cannot open %s\n", argv[1]); return 1; } /* Make sure we are dealing with an database file */ got = read(hDb, aHdr, 100); if( got!=100 || memcmp(aHdr, "SQLite format 3",16)!=0 ){ fprintf(stderr, "not an SQLite database: %s\n", argv[1]); exit(1); } /* First check for an exclusive lock */ if( isLocked(hDb, F_RDLCK, SHARED_FIRST, SHARED_SIZE, "EXCLUSIVE") ){ return 0; } isWal = aHdr[18]==2; if( isWal==0 ){ /* Rollback mode */ if( isLocked(hDb, F_RDLCK, PENDING_BYTE, 1, "PENDING") ) return 0; if( isLocked(hDb, F_RDLCK, RESERVED_BYTE, 1, "RESERVED") ) return 0; if( isLocked(hDb, F_WRLCK, SHARED_FIRST, SHARED_SIZE, "SHARED") ){ return 0; } }else{ /* WAL mode */ nName = (int)strlen(argv[1]); zShm = malloc( nName + 100 ); if( zShm==0 ){ fprintf(stderr, "out of memory\n"); exit(1); } memcpy(zShm, argv[1], nName); memcpy(&zShm[nName], "-shm", 5); hShm = open(zShm, O_RDONLY, 0); if( hShm<0 ){ fprintf(stderr, "cannot open %s\n", zShm); return 1; } if( isLocked(hShm, F_RDLCK, SHM_RECOVER, 1, "WAL-RECOVERY") ){ return 0; } nLock += isLocked(hShm, F_RDLCK, SHM_CHECKPOINT, 1, "WAL-CHECKPOINT"); nLock += isLocked(hShm, F_RDLCK, SHM_WRITE, 1, "WAL-WRITE"); for(i=0; i<SHM_READ_SIZE; i++){ nLock += isLocked(hShm, F_WRLCK, SHM_READ_FIRST+i, 1, "WAL-READ"); } } if( nLock==0 ){ printf("file is not locked\n"); } return 0; } |
Changes to tool/shell1.test.
︙ | ︙ | |||
196 197 198 199 200 201 202 | list $rc \ [regexp {Error: missing argument for option: -nullvalue} $res] } {1 1} # -version show SQLite version do_test shell1-1.16.1 { catchcmd "-version test.db" "" | | | 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 | list $rc \ [regexp {Error: missing argument for option: -nullvalue} $res] } {1 1} # -version show SQLite version do_test shell1-1.16.1 { catchcmd "-version test.db" "" } {0 3.7.7} #---------------------------------------------------------------------------- # Test cases shell1-2.*: Basic "dot" command token parsing. # # check first token handling do_test shell1-2.1.1 { |
︙ | ︙ | |||
707 708 709 710 711 712 713 714 | catchcmd "test.db" ".timer OFF" } {0 {}} do_test shell1-3.27.4 { # too many arguments catchcmd "test.db" ".timer OFF BAD" } {1 {Error: unknown command or invalid arguments: "timer". Enter ".help" for help}} puts "CLI tests completed successfully" | > > > > > | 707 708 709 710 711 712 713 714 715 716 717 718 719 | catchcmd "test.db" ".timer OFF" } {0 {}} do_test shell1-3.27.4 { # too many arguments catchcmd "test.db" ".timer OFF BAD" } {1 {Error: unknown command or invalid arguments: "timer". Enter ".help" for help}} do_test shell1-3-28.1 { catchcmd test.db \ ".log stdout\nSELECT coalesce(sqlite_log(123,'hello'),'456');" } "0 {(123) hello\n456}" puts "CLI tests completed successfully" |
Changes to tool/showdb.c.
︙ | ︙ | |||
460 461 462 463 464 465 466 | " dbheader Show database header\n" " NNN..MMM Show hex of pages NNN through MMM\n" " NNN..end Show hex of pages NNN through end of file\n" " NNNb Decode btree page NNN\n" " NNNbc Decode btree page NNN and show content\n" " NNNbm Decode btree page NNN and show a layout map\n" " NNNt Decode freelist trunk page NNN\n" | | | 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 | " dbheader Show database header\n" " NNN..MMM Show hex of pages NNN through MMM\n" " NNN..end Show hex of pages NNN through end of file\n" " NNNb Decode btree page NNN\n" " NNNbc Decode btree page NNN and show content\n" " NNNbm Decode btree page NNN and show a layout map\n" " NNNt Decode freelist trunk page NNN\n" " NNNtd Show leaf freelist pages on the decode\n" " NNNtr Recurisvely decode freelist starting at NNN\n" ); } int main(int argc, char **argv){ struct stat sbuf; unsigned char zPgSz[2]; |
︙ | ︙ |