SQLite

Check-in [daf730d1de]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Refactor the name resolution procedures in the code generator. (CVS 5569)
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: daf730d1defa78fb8b80a78f9108ac35a13e09f6
User & Date: drh 2008-08-20 16:35:10.000
References
2013-01-03
15:27 New ticket [beba9cae63] Assertion fault on a valid query. (artifact: abccd059f8 user: drh)
2011-09-16
16:20 New ticket [1a1308d253] Nested correlated subquery fails when indices used. (artifact: f68bc318a5 user: drh)
Context
2008-08-20
17:19
Fix a problem in Makefile.in causing the static function hash-table to be constructed incorrectly (segfault). (CVS 5570) (check-in: aef5b909e9 user: danielk1977 tags: trunk)
16:35
Refactor the name resolution procedures in the code generator. (CVS 5569) (check-in: daf730d1de user: drh tags: trunk)
16:34
When a "pragma main.table_info(...)" is issued, consider only tables from the main database, not the temp db. Ticket #3320. (CVS 5568) (check-in: d0cfbbbaee user: danielk1977 tags: trunk)
Changes
Unified Diff Ignore Whitespace Patch
Changes to Makefile.in.
159
160
161
162
163
164
165

166
167
168
169
170
171
172
173
174
175
176
        btree.lo build.lo callback.lo complete.lo date.lo \
        delete.lo expr.lo fault.lo func2.lo global.lo \
        hash.lo journal.lo insert.lo loadext.lo \
        main.lo malloc.lo mem1.lo mem2.lo mem3.lo mem4.lo mem5.lo mem6.lo \
        mutex.lo mutex_os2.lo mutex_unix.lo mutex_w32.lo \
        opcodes.lo os.lo os_unix.lo os_win.lo os_os2.lo \
        pager.lo parse.lo pcache.lo pragma.lo prepare.lo printf.lo random.lo \

        select.lo status.lo table.lo tokenize.lo trigger.lo update.lo \
        util.lo vacuum.lo \
        vdbe.lo vdbeapi.lo vdbeaux.lo vdbeblob.lo vdbefifo.lo vdbemem.lo \
        where.lo utf.lo legacy.lo vtab.lo

# Object files for the amalgamation.
#
OBJS1 = sqlite3.lo

# Determine the real value of LIBOBJ based on the 'configure' script
#







>
|


|







159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
        btree.lo build.lo callback.lo complete.lo date.lo \
        delete.lo expr.lo fault.lo func2.lo global.lo \
        hash.lo journal.lo insert.lo loadext.lo \
        main.lo malloc.lo mem1.lo mem2.lo mem3.lo mem4.lo mem5.lo mem6.lo \
        mutex.lo mutex_os2.lo mutex_unix.lo mutex_w32.lo \
        opcodes.lo os.lo os_unix.lo os_win.lo os_os2.lo \
        pager.lo parse.lo pcache.lo pragma.lo prepare.lo printf.lo random.lo \
        resolve.lo select.lo status.lo \
        table.lo tokenize.lo trigger.lo update.lo \
        util.lo vacuum.lo \
        vdbe.lo vdbeapi.lo vdbeaux.lo vdbeblob.lo vdbefifo.lo vdbemem.lo \
        walker.lo where.lo utf.lo vtab.lo

# Object files for the amalgamation.
#
OBJS1 = sqlite3.lo

# Determine the real value of LIBOBJ based on the 'configure' script
#
229
230
231
232
233
234
235

236
237
238
239
240
241
242
  $(TOP)/src/parse.y \
  $(TOP)/src/pcache.c \
  $(TOP)/src/pcache.h \
  $(TOP)/src/pragma.c \
  $(TOP)/src/prepare.c \
  $(TOP)/src/printf.c \
  $(TOP)/src/random.c \

  $(TOP)/src/select.c \
  $(TOP)/src/status.c \
  $(TOP)/src/shell.c \
  $(TOP)/src/sqlite.h.in \
  $(TOP)/src/sqlite3ext.h \
  $(TOP)/src/sqliteInt.h \
  $(TOP)/src/sqliteLimit.h \







>







230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
  $(TOP)/src/parse.y \
  $(TOP)/src/pcache.c \
  $(TOP)/src/pcache.h \
  $(TOP)/src/pragma.c \
  $(TOP)/src/prepare.c \
  $(TOP)/src/printf.c \
  $(TOP)/src/random.c \
  $(TOP)/src/resolve.c \
  $(TOP)/src/select.c \
  $(TOP)/src/status.c \
  $(TOP)/src/shell.c \
  $(TOP)/src/sqlite.h.in \
  $(TOP)/src/sqlite3ext.h \
  $(TOP)/src/sqliteInt.h \
  $(TOP)/src/sqliteLimit.h \
253
254
255
256
257
258
259

260
261
262
263
264
265
266
  $(TOP)/src/vdbeapi.c \
  $(TOP)/src/vdbeaux.c \
  $(TOP)/src/vdbeblob.c \
  $(TOP)/src/vdbefifo.c \
  $(TOP)/src/vdbemem.c \
  $(TOP)/src/vdbeInt.h \
  $(TOP)/src/vtab.c \

  $(TOP)/src/where.c

# Generated source code files
#
SRC += \
  func2.c \
  keywordhash.h \







>







255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
  $(TOP)/src/vdbeapi.c \
  $(TOP)/src/vdbeaux.c \
  $(TOP)/src/vdbeblob.c \
  $(TOP)/src/vdbefifo.c \
  $(TOP)/src/vdbemem.c \
  $(TOP)/src/vdbeInt.h \
  $(TOP)/src/vtab.c \
  $(TOP)/src/walker.c \
  $(TOP)/src/where.c

# Generated source code files
#
SRC += \
  func2.c \
  keywordhash.h \
626
627
628
629
630
631
632



633
634
635
636
637
638
639

printf.lo:	$(TOP)/src/printf.c $(HDR)
	$(LTCOMPILE) -c $(TOP)/src/printf.c

random.lo:	$(TOP)/src/random.c $(HDR)
	$(LTCOMPILE) -c $(TOP)/src/random.c




select.lo:	$(TOP)/src/select.c $(HDR)
	$(LTCOMPILE) -c $(TOP)/src/select.c

status.lo:	$(TOP)/src/status.c $(HDR)
	$(LTCOMPILE) -c $(TOP)/src/status.c

sqlite3.h:	$(TOP)/src/sqlite.h.in 







>
>
>







629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645

printf.lo:	$(TOP)/src/printf.c $(HDR)
	$(LTCOMPILE) -c $(TOP)/src/printf.c

random.lo:	$(TOP)/src/random.c $(HDR)
	$(LTCOMPILE) -c $(TOP)/src/random.c

resolve.lo:	$(TOP)/src/resolve.c $(HDR)
	$(LTCOMPILE) -c $(TOP)/src/resolve.c

select.lo:	$(TOP)/src/select.c $(HDR)
	$(LTCOMPILE) -c $(TOP)/src/select.c

status.lo:	$(TOP)/src/status.c $(HDR)
	$(LTCOMPILE) -c $(TOP)/src/status.c

sqlite3.h:	$(TOP)/src/sqlite.h.in 
684
685
686
687
688
689
690



691
692
693
694
695
696
697
	$(LTCOMPILE) -c $(TOP)/src/vdbefifo.c

vdbemem.lo:	$(TOP)/src/vdbemem.c $(HDR)
	$(LTCOMPILE) -c $(TOP)/src/vdbemem.c

vtab.lo:	$(TOP)/src/vtab.c $(HDR)
	$(LTCOMPILE) -c $(TOP)/src/vtab.c




where.lo:	$(TOP)/src/where.c $(HDR)
	$(LTCOMPILE) -c $(TOP)/src/where.c

tclsqlite-shell.lo:	$(TOP)/src/tclsqlite.c $(HDR)
	$(LTCOMPILE) -DTCLSH=1 -o $@ -c $(TOP)/src/tclsqlite.c








>
>
>







690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
	$(LTCOMPILE) -c $(TOP)/src/vdbefifo.c

vdbemem.lo:	$(TOP)/src/vdbemem.c $(HDR)
	$(LTCOMPILE) -c $(TOP)/src/vdbemem.c

vtab.lo:	$(TOP)/src/vtab.c $(HDR)
	$(LTCOMPILE) -c $(TOP)/src/vtab.c

walker.lo:	$(TOP)/src/walker.c $(HDR)
	$(LTCOMPILE) -c $(TOP)/src/walker.c

where.lo:	$(TOP)/src/where.c $(HDR)
	$(LTCOMPILE) -c $(TOP)/src/where.c

tclsqlite-shell.lo:	$(TOP)/src/tclsqlite.c $(HDR)
	$(LTCOMPILE) -DTCLSH=1 -o $@ -c $(TOP)/src/tclsqlite.c

Changes to addopcodes.awk.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
  max = 0
}
/^#define TK_/ {
  print $0
  if( max<$3 ) max = $3
}
END {
  printf "#define TK_%-29s %4d\n", "TO_TEXT",         max+1
  printf "#define TK_%-29s %4d\n", "TO_BLOB",         max+2
  printf "#define TK_%-29s %4d\n", "TO_NUMERIC",      max+3
  printf "#define TK_%-29s %4d\n", "TO_INT",          max+4
  printf "#define TK_%-29s %4d\n", "TO_REAL",         max+5
  printf "#define TK_%-29s %4d\n", "END_OF_FILE",     max+6
  printf "#define TK_%-29s %4d\n", "ILLEGAL",         max+7
  printf "#define TK_%-29s %4d\n", "SPACE",           max+8
  printf "#define TK_%-29s %4d\n", "UNCLOSED_STRING", max+9
  printf "#define TK_%-29s %4d\n", "FUNCTION",        max+10
  printf "#define TK_%-29s %4d\n", "COLUMN",          max+11
  printf "#define TK_%-29s %4d\n", "AGG_FUNCTION",    max+12
  printf "#define TK_%-29s %4d\n", "AGG_COLUMN",      max+13
  printf "#define TK_%-29s %4d\n", "CONST_FUNC",      max+14
}







|
|
|
|
|
|
|
|
|
|
|
|
|
|

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
  max = 0
}
/^#define TK_/ {
  print $0
  if( max<$3 ) max = $3
}
END {
  printf "#define TK_%-29s %4d\n", "TO_TEXT",         ++max
  printf "#define TK_%-29s %4d\n", "TO_BLOB",         ++max
  printf "#define TK_%-29s %4d\n", "TO_NUMERIC",      ++max
  printf "#define TK_%-29s %4d\n", "TO_INT",          ++max
  printf "#define TK_%-29s %4d\n", "TO_REAL",         ++max
  printf "#define TK_%-29s %4d\n", "END_OF_FILE",     ++max
  printf "#define TK_%-29s %4d\n", "ILLEGAL",         ++max
  printf "#define TK_%-29s %4d\n", "SPACE",           ++max
  printf "#define TK_%-29s %4d\n", "UNCLOSED_STRING", ++max
  printf "#define TK_%-29s %4d\n", "FUNCTION",        ++max
  printf "#define TK_%-29s %4d\n", "COLUMN",          ++max
  printf "#define TK_%-29s %4d\n", "AGG_FUNCTION",    ++max
  printf "#define TK_%-29s %4d\n", "AGG_COLUMN",      ++max
  printf "#define TK_%-29s %4d\n", "CONST_FUNC",      ++max
}
Changes to main.mk.
44
45
46
47
48
49
50
51

52
53

54
55
56
57

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

# This is how we compile
#
TCCX = $(TCC) $(OPTS) -I. -I$(TOP)/src -I$(TOP) -I$(TOP)/ext/rtree

# Object files for the SQLite library.
#
LIBOBJ+= alter.o analyze.o attach.o auth.o bitvec.o btmutex.o btree.o build.o \

         callback.o complete.o date.o delete.o \
         expr.o fault.o func2.o global.o hash.o insert.o journal.o loadext.o \

         main.o malloc.o mem1.o mem2.o mem3.o mem4.o mem5.o mem6.o \
         mutex.o mutex_os2.o mutex_unix.o mutex_w32.o \
         opcodes.o os.o os_os2.o os_unix.o os_win.o \
         pager.o parse.o pragma.o prepare.o printf.o random.o \

         select.o status.o table.o $(TCLOBJ) tokenize.o trigger.o \
         update.o util.o vacuum.o \
         vdbe.o vdbeapi.o vdbeaux.o vdbeblob.o vdbefifo.o vdbemem.o \
         where.o utf.o legacy.o vtab.o rtree.o icu.o pcache.o

EXTOBJ = icu.o
EXTOBJ += fts1.o \
	  fts1_hash.o \
	  fts1_tokenizer1.o \
	  fts1_porter.o
EXTOBJ += fts2.o \
	  fts2_hash.o \
	  fts2_icu.o \
	  fts2_porter.o \
          fts2_tokenizer.o \
	  fts2_tokenizer1.o
EXTOBJ += fts3.o \
	  fts3_hash.o \
	  fts3_icu.o \
	  fts3_porter.o \
          fts3_tokenizer.o \
	  fts3_tokenizer1.o
EXTOBJ += rtree.o

# All of the source code files.
#
SRC = \
  $(TOP)/src/alter.c \
  $(TOP)/src/analyze.c \
  $(TOP)/src/attach.c \







|
>

|
>



|
>
|


|

<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65


















66
67
68
69
70
71
72

# This is how we compile
#
TCCX = $(TCC) $(OPTS) -I. -I$(TOP)/src -I$(TOP) -I$(TOP)/ext/rtree

# Object files for the SQLite library.
#
LIBOBJ+= alter.o analyze.o attach.o auth.o \
         bitvec.o btmutex.o btree.o build.o \
         callback.o complete.o date.o delete.o \
         expr.o fault.o func2.o global.o hash.o \
         icu.o insert.o journal.o legacy.o loadext.o \
         main.o malloc.o mem1.o mem2.o mem3.o mem4.o mem5.o mem6.o \
         mutex.o mutex_os2.o mutex_unix.o mutex_w32.o \
         opcodes.o os.o os_os2.o os_unix.o os_win.o \
         pager.o parse.o pcache.o pragma.o prepare.o printf.o \
         random.o resolve.o rtree.o select.o status.o \
         table.o tokenize.o trigger.o \
         update.o util.o vacuum.o \
         vdbe.o vdbeapi.o vdbeaux.o vdbeblob.o vdbefifo.o vdbemem.o \
         walker.o where.o utf.o vtab.o




















# All of the source code files.
#
SRC = \
  $(TOP)/src/alter.c \
  $(TOP)/src/analyze.c \
  $(TOP)/src/attach.c \
124
125
126
127
128
129
130


131
132
133
134

135
136
137
138
139
140
141
  $(TOP)/src/os_common.h \
  $(TOP)/src/os_os2.c \
  $(TOP)/src/os_unix.c \
  $(TOP)/src/os_win.c \
  $(TOP)/src/pager.c \
  $(TOP)/src/pager.h \
  $(TOP)/src/parse.y \


  $(TOP)/src/pragma.c \
  $(TOP)/src/prepare.c \
  $(TOP)/src/printf.c \
  $(TOP)/src/random.c \

  $(TOP)/src/select.c \
  $(TOP)/src/status.c \
  $(TOP)/src/shell.c \
  $(TOP)/src/sqlite.h.in \
  $(TOP)/src/sqlite3ext.h \
  $(TOP)/src/sqliteInt.h \
  $(TOP)/src/sqliteLimit.h \







>
>




>







109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
  $(TOP)/src/os_common.h \
  $(TOP)/src/os_os2.c \
  $(TOP)/src/os_unix.c \
  $(TOP)/src/os_win.c \
  $(TOP)/src/pager.c \
  $(TOP)/src/pager.h \
  $(TOP)/src/parse.y \
  $(TOP)/src/pcache.c \
  $(TOP)/src/pcache.h \
  $(TOP)/src/pragma.c \
  $(TOP)/src/prepare.c \
  $(TOP)/src/printf.c \
  $(TOP)/src/random.c \
  $(TOP)/src/resolve.c \
  $(TOP)/src/select.c \
  $(TOP)/src/status.c \
  $(TOP)/src/shell.c \
  $(TOP)/src/sqlite.h.in \
  $(TOP)/src/sqlite3ext.h \
  $(TOP)/src/sqliteInt.h \
  $(TOP)/src/sqliteLimit.h \
153
154
155
156
157
158
159

160
161
162
163
164
165
166
  $(TOP)/src/vdbeaux.c \
  $(TOP)/src/vdbeblob.c \
  $(TOP)/src/vdbefifo.c \
  $(TOP)/src/vdbemem.c \
  $(TOP)/src/pcache.c \
  $(TOP)/src/vdbeInt.h \
  $(TOP)/src/vtab.c \

  $(TOP)/src/where.c

# Source code for extensions
#
SRC += \
  $(TOP)/ext/fts1/fts1.c \
  $(TOP)/ext/fts1/fts1.h \







>







141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
  $(TOP)/src/vdbeaux.c \
  $(TOP)/src/vdbeblob.c \
  $(TOP)/src/vdbefifo.c \
  $(TOP)/src/vdbemem.c \
  $(TOP)/src/pcache.c \
  $(TOP)/src/vdbeInt.h \
  $(TOP)/src/vtab.c \
  $(TOP)/src/walker.c \
  $(TOP)/src/where.c

# Source code for extensions
#
SRC += \
  $(TOP)/ext/fts1/fts1.c \
  $(TOP)/ext/fts1/fts1.h \
Changes to src/attach.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/*
** 2003 April 6
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains code used to implement the ATTACH and DETACH commands.
**
** $Id: attach.c,v 1.77 2008/07/28 19:34:53 drh Exp $
*/
#include "sqliteInt.h"

#ifndef SQLITE_OMIT_ATTACH
/*
** Resolve an expression that was part of an ATTACH or DETACH statement. This
** is slightly different from resolving a normal SQL expression, because simple













|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/*
** 2003 April 6
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains code used to implement the ATTACH and DETACH commands.
**
** $Id: attach.c,v 1.78 2008/08/20 16:35:10 drh Exp $
*/
#include "sqliteInt.h"

#ifndef SQLITE_OMIT_ATTACH
/*
** Resolve an expression that was part of an ATTACH or DETACH statement. This
** is slightly different from resolving a normal SQL expression, because simple
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
** will fail because neither abc or def can be resolved.
*/
static int resolveAttachExpr(NameContext *pName, Expr *pExpr)
{
  int rc = SQLITE_OK;
  if( pExpr ){
    if( pExpr->op!=TK_ID ){
      rc = sqlite3ExprResolveNames(pName, pExpr);
      if( rc==SQLITE_OK && !sqlite3ExprIsConstant(pExpr) ){
        sqlite3ErrorMsg(pName->pParse, "invalid name: \"%T\"", &pExpr->span);
        return SQLITE_ERROR;
      }
    }else{
      pExpr->op = TK_STRING;
    }







|







35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
** will fail because neither abc or def can be resolved.
*/
static int resolveAttachExpr(NameContext *pName, Expr *pExpr)
{
  int rc = SQLITE_OK;
  if( pExpr ){
    if( pExpr->op!=TK_ID ){
      rc = sqlite3ResolveExprNames(pName, pExpr);
      if( rc==SQLITE_OK && !sqlite3ExprIsConstant(pExpr) ){
        sqlite3ErrorMsg(pName->pParse, "invalid name: \"%T\"", &pExpr->span);
        return SQLITE_ERROR;
      }
    }else{
      pExpr->op = TK_STRING;
    }
Changes to src/build.c.
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
**     CREATE INDEX
**     DROP INDEX
**     creating ID lists
**     BEGIN TRANSACTION
**     COMMIT
**     ROLLBACK
**
** $Id: build.c,v 1.495 2008/08/11 18:44:58 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>

/*
** This routine is called when a new SQL statement is beginning to
** be parsed.  Initialize the pParse structure as needed.







|







18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
**     CREATE INDEX
**     DROP INDEX
**     creating ID lists
**     BEGIN TRANSACTION
**     COMMIT
**     ROLLBACK
**
** $Id: build.c,v 1.496 2008/08/20 16:35:10 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>

/*
** This routine is called when a new SQL statement is beginning to
** be parsed.  Initialize the pParse structure as needed.
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
  int autoInc,      /* True if the AUTOINCREMENT keyword is present */
  int sortOrder     /* SQLITE_SO_ASC or SQLITE_SO_DESC */
){
  Table *pTab = pParse->pNewTable;
  char *zType = 0;
  int iCol = -1, i;
  if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit;
  if( pTab->hasPrimKey ){
    sqlite3ErrorMsg(pParse, 
      "table \"%s\" has more than one primary key", pTab->zName);
    goto primary_key_exit;
  }
  pTab->hasPrimKey = 1;
  if( pList==0 ){
    iCol = pTab->nCol - 1;
    pTab->aCol[iCol].isPrimKey = 1;
  }else{
    for(i=0; i<pList->nExpr; i++){
      for(iCol=0; iCol<pTab->nCol; iCol++){
        if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){







|




|







1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
  int autoInc,      /* True if the AUTOINCREMENT keyword is present */
  int sortOrder     /* SQLITE_SO_ASC or SQLITE_SO_DESC */
){
  Table *pTab = pParse->pNewTable;
  char *zType = 0;
  int iCol = -1, i;
  if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit;
  if( pTab->tabFlags & TF_HasPrimaryKey ){
    sqlite3ErrorMsg(pParse, 
      "table \"%s\" has more than one primary key", pTab->zName);
    goto primary_key_exit;
  }
  pTab->tabFlags |= TF_HasPrimaryKey;
  if( pList==0 ){
    iCol = pTab->nCol - 1;
    pTab->aCol[iCol].isPrimKey = 1;
  }else{
    for(i=0; i<pList->nExpr; i++){
      for(iCol=0; iCol<pTab->nCol; iCol++){
        if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){
1165
1166
1167
1168
1169
1170
1171
1172

1173
1174
1175
1176
1177
1178
1179
  if( iCol>=0 && iCol<pTab->nCol ){
    zType = pTab->aCol[iCol].zType;
  }
  if( zType && sqlite3StrICmp(zType, "INTEGER")==0
        && sortOrder==SQLITE_SO_ASC ){
    pTab->iPKey = iCol;
    pTab->keyConf = onError;
    pTab->autoInc = autoInc;

  }else if( autoInc ){
#ifndef SQLITE_OMIT_AUTOINCREMENT
    sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
       "INTEGER PRIMARY KEY");
#endif
  }else{
    sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 0, sortOrder, 0);







|
>







1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
  if( iCol>=0 && iCol<pTab->nCol ){
    zType = pTab->aCol[iCol].zType;
  }
  if( zType && sqlite3StrICmp(zType, "INTEGER")==0
        && sortOrder==SQLITE_SO_ASC ){
    pTab->iPKey = iCol;
    pTab->keyConf = onError;
    assert( autoInc==0 || autoInc==1 );
    pTab->tabFlags |= autoInc*TF_Autoincrement;
  }else if( autoInc ){
#ifndef SQLITE_OMIT_AUTOINCREMENT
    sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
       "INTEGER PRIMARY KEY");
#endif
  }else{
    sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 0, sortOrder, 0);
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
    sSrc.nSrc = 1;
    sSrc.a[0].zName = p->zName;
    sSrc.a[0].pTab = p;
    sSrc.a[0].iCursor = -1;
    sNC.pParse = pParse;
    sNC.pSrcList = &sSrc;
    sNC.isCheck = 1;
    if( sqlite3ExprResolveNames(&sNC, p->pCheck) ){
      return;
    }
  }
#endif /* !defined(SQLITE_OMIT_CHECK) */

  /* If the db->init.busy is 1 it means we are reading the SQL off the
  ** "sqlite_master" or "sqlite_temp_master" table on the disk.







|







1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
    sSrc.nSrc = 1;
    sSrc.a[0].zName = p->zName;
    sSrc.a[0].pTab = p;
    sSrc.a[0].iCursor = -1;
    sNC.pParse = pParse;
    sNC.pSrcList = &sSrc;
    sNC.isCheck = 1;
    if( sqlite3ResolveExprNames(&sNC, p->pCheck) ){
      return;
    }
  }
#endif /* !defined(SQLITE_OMIT_CHECK) */

  /* If the db->init.busy is 1 it means we are reading the SQL off the
  ** "sqlite_master" or "sqlite_temp_master" table on the disk.
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
      Table *pSelTab;

      assert(pParse->nTab==0);
      sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
      sqlite3VdbeChangeP5(v, 1);
      pParse->nTab = 2;
      sqlite3SelectDestInit(&dest, SRT_Table, 1);
      sqlite3Select(pParse, pSelect, &dest, 0, 0, 0);
      sqlite3VdbeAddOp1(v, OP_Close, 1);
      if( pParse->nErr==0 ){
        pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSelect);
        if( pSelTab==0 ) return;
        assert( p->aCol==0 );
        p->nCol = pSelTab->nCol;
        p->aCol = pSelTab->aCol;
        pSelTab->nCol = 0;
        pSelTab->aCol = 0;
        sqlite3DeleteTable(pSelTab);







|


|







1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
      Table *pSelTab;

      assert(pParse->nTab==0);
      sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
      sqlite3VdbeChangeP5(v, 1);
      pParse->nTab = 2;
      sqlite3SelectDestInit(&dest, SRT_Table, 1);
      sqlite3Select(pParse, pSelect, &dest);
      sqlite3VdbeAddOp1(v, OP_Close, 1);
      if( pParse->nErr==0 ){
        pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect);
        if( pSelTab==0 ) return;
        assert( p->aCol==0 );
        p->nCol = pSelTab->nCol;
        p->aCol = pSelTab->aCol;
        pSelTab->nCol = 0;
        pSelTab->aCol = 0;
        sqlite3DeleteTable(pSelTab);
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
    sqlite3DbFree(db, zStmt);
    sqlite3ChangeCookie(pParse, iDb);

#ifndef SQLITE_OMIT_AUTOINCREMENT
    /* Check to see if we need to create an sqlite_sequence table for
    ** keeping track of autoincrement keys.
    */
    if( p->autoInc ){
      Db *pDb = &db->aDb[iDb];
      if( pDb->pSchema->pSeqTab==0 ){
        sqlite3NestedParse(pParse,
          "CREATE TABLE %Q.sqlite_sequence(name,seq)",
          pDb->zName
        );
      }







|







1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
    sqlite3DbFree(db, zStmt);
    sqlite3ChangeCookie(pParse, iDb);

#ifndef SQLITE_OMIT_AUTOINCREMENT
    /* Check to see if we need to create an sqlite_sequence table for
    ** keeping track of autoincrement keys.
    */
    if( p->tabFlags & TF_Autoincrement ){
      Db *pDb = &db->aDb[iDb];
      if( pDb->pSchema->pSeqTab==0 ){
        sqlite3NestedParse(pParse,
          "CREATE TABLE %Q.sqlite_sequence(name,seq)",
          pDb->zName
        );
      }
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
  if( pSel ){
    n = pParse->nTab;
    sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
    pTable->nCol = -1;
#ifndef SQLITE_OMIT_AUTHORIZATION
    xAuth = db->xAuth;
    db->xAuth = 0;
    pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSel);
    db->xAuth = xAuth;
#else
    pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSel);
#endif
    pParse->nTab = n;
    if( pSelTab ){
      assert( pTable->aCol==0 );
      pTable->nCol = pSelTab->nCol;
      pTable->aCol = pSelTab->aCol;
      pSelTab->nCol = 0;







|


|







1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
  if( pSel ){
    n = pParse->nTab;
    sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
    pTable->nCol = -1;
#ifndef SQLITE_OMIT_AUTHORIZATION
    xAuth = db->xAuth;
    db->xAuth = 0;
    pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
    db->xAuth = xAuth;
#else
    pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
#endif
    pParse->nTab = n;
    if( pSelTab ){
      assert( pTable->aCol==0 );
      pTable->nCol = pSelTab->nCol;
      pTable->aCol = pSelTab->aCol;
      pSelTab->nCol = 0;
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076

#ifndef SQLITE_OMIT_AUTOINCREMENT
    /* Remove any entries of the sqlite_sequence table associated with
    ** the table being dropped. This is done before the table is dropped
    ** at the btree level, in case the sqlite_sequence table needs to
    ** move as a result of the drop (can happen in auto-vacuum mode).
    */
    if( pTab->autoInc ){
      sqlite3NestedParse(pParse,
        "DELETE FROM %s.sqlite_sequence WHERE name=%Q",
        pDb->zName, pTab->zName
      );
    }
#endif








|







2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077

#ifndef SQLITE_OMIT_AUTOINCREMENT
    /* Remove any entries of the sqlite_sequence table associated with
    ** the table being dropped. This is done before the table is dropped
    ** at the btree level, in case the sqlite_sequence table needs to
    ** move as a result of the drop (can happen in auto-vacuum mode).
    */
    if( pTab->tabFlags & TF_Autoincrement ){
      sqlite3NestedParse(pParse,
        "DELETE FROM %s.sqlite_sequence WHERE name=%Q",
        pDb->zName, pTab->zName
      );
    }
#endif

2499
2500
2501
2502
2503
2504
2505
2506

2507
2508
2509
2510
2511
2512
2513
2514
2515
    pList->a[0].sortOrder = sortOrder;
  }

  /* Figure out how many bytes of space are required to store explicitly
  ** specified collation sequence names.
  */
  for(i=0; i<pList->nExpr; i++){
    Expr *pExpr = pList->a[i].pExpr;

    if( pExpr ){
      nExtra += (1 + strlen(pExpr->pColl->zName));
    }
  }

  /* 
  ** Allocate the index structure. 
  */
  nName = strlen(zName);







|
>
|
|







2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
    pList->a[0].sortOrder = sortOrder;
  }

  /* Figure out how many bytes of space are required to store explicitly
  ** specified collation sequence names.
  */
  for(i=0; i<pList->nExpr; i++){
    Expr *pExpr;
    CollSeq *pColl;
    if( (pExpr = pList->a[i].pExpr)!=0 && (pColl = pExpr->pColl)!=0 ){
      nExtra += (1 + strlen(pColl->zName));
    }
  }

  /* 
  ** Allocate the index structure. 
  */
  nName = strlen(zName);
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
    /* TODO:  Add a test to make sure that the same column is not named
    ** more than once within the same index.  Only the first instance of
    ** the column will ever be used by the optimizer.  Note that using the
    ** same column more than once cannot be an error because that would 
    ** break backwards compatibility - it needs to be a warning.
    */
    pIndex->aiColumn[i] = j;
    if( pListItem->pExpr ){
      assert( pListItem->pExpr->pColl );
      zColl = zExtra;
      sqlite3_snprintf(nExtra, zExtra, "%s", pListItem->pExpr->pColl->zName);
      zExtra += (strlen(zColl) + 1);
    }else{
      zColl = pTab->aCol[j].zColl;
      if( !zColl ){







|







2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
    /* TODO:  Add a test to make sure that the same column is not named
    ** more than once within the same index.  Only the first instance of
    ** the column will ever be used by the optimizer.  Note that using the
    ** same column more than once cannot be an error because that would 
    ** break backwards compatibility - it needs to be a warning.
    */
    pIndex->aiColumn[i] = j;
    if( pListItem->pExpr && pListItem->pExpr->pColl ){
      assert( pListItem->pExpr->pColl );
      zColl = zExtra;
      sqlite3_snprintf(nExtra, zExtra, "%s", pListItem->pExpr->pColl->zName);
      zExtra += (strlen(zColl) + 1);
    }else{
      zColl = pTab->aCol[j].zColl;
      if( !zColl ){
Changes to src/delete.c.
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that are called by the parser
** in order to generate code for DELETE FROM statements.
**
** $Id: delete.c,v 1.171 2008/07/28 19:34:53 drh Exp $
*/
#include "sqliteInt.h"

/*
** Look up every table that is named in pSrc.  If any table is not found,
** add an error message to pParse->zErrMsg and return NULL.  If all tables
** are found, return a pointer to the last table.







|







8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that are called by the parser
** in order to generate code for DELETE FROM statements.
**
** $Id: delete.c,v 1.172 2008/08/20 16:35:10 drh Exp $
*/
#include "sqliteInt.h"

/*
** Look up every table that is named in pSrc.  If any table is not found,
** add an error message to pParse->zErrMsg and return NULL.  If all tables
** are found, return a pointer to the last table.
38
39
40
41
42
43
44

45
46
47
48
49
50
51
52

/*
** Check to make sure the given table is writable.  If it is not
** writable, generate an error message and return 1.  If it is
** writable return 0;
*/
int sqlite3IsReadOnly(Parse *pParse, Table *pTab, int viewOk){

  if( (pTab->readOnly && (pParse->db->flags & SQLITE_WriteSchema)==0
        && pParse->nested==0) 
#ifndef SQLITE_OMIT_VIRTUALTABLE
      || (pTab->pMod && pTab->pMod->pModule->xUpdate==0)
#endif
  ){
    sqlite3ErrorMsg(pParse, "table %s may not be modified", pTab->zName);
    return 1;







>
|







38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

/*
** Check to make sure the given table is writable.  If it is not
** writable, generate an error message and return 1.  If it is
** writable return 0;
*/
int sqlite3IsReadOnly(Parse *pParse, Table *pTab, int viewOk){
  if( ((pTab->tabFlags & TF_Readonly)!=0
        && (pParse->db->flags & SQLITE_WriteSchema)==0
        && pParse->nested==0) 
#ifndef SQLITE_OMIT_VIRTUALTABLE
      || (pTab->pMod && pTab->pMod->pModule->xUpdate==0)
#endif
  ){
    sqlite3ErrorMsg(pParse, "table %s may not be modified", pTab->zName);
    return 1;
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
    SrcList *pFrom;
    
    pWhere = sqlite3ExprDup(db, pWhere);
    pFrom = sqlite3SrcListAppendFromTerm(pParse, 0, 0, 0, 0, pDup, 0, 0);
    pDup = sqlite3SelectNew(pParse, 0, pFrom, pWhere, 0, 0, 0, 0, 0, 0);
  }
  sqlite3SelectDestInit(&dest, SRT_EphemTab, iCur);
  sqlite3Select(pParse, pDup, &dest, 0, 0, 0);
  sqlite3SelectDelete(db, pDup);
}
#endif /* !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) */


/*
** Generate code for a DELETE FROM statement.







|







103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
    SrcList *pFrom;
    
    pWhere = sqlite3ExprDup(db, pWhere);
    pFrom = sqlite3SrcListAppendFromTerm(pParse, 0, 0, 0, 0, pDup, 0, 0);
    pDup = sqlite3SelectNew(pParse, 0, pFrom, pWhere, 0, 0, 0, 0, 0, 0);
  }
  sqlite3SelectDestInit(&dest, SRT_EphemTab, iCur);
  sqlite3Select(pParse, pDup, &dest);
  sqlite3SelectDelete(db, pDup);
}
#endif /* !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) */


/*
** Generate code for a DELETE FROM statement.
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
  }

  /* Resolve the column names in the WHERE clause.
  */
  memset(&sNC, 0, sizeof(sNC));
  sNC.pParse = pParse;
  sNC.pSrcList = pTabList;
  if( sqlite3ExprResolveNames(&sNC, pWhere) ){
    goto delete_from_cleanup;
  }

  /* Initialize the counter of the number of rows deleted, if
  ** we are counting rows.
  */
  if( db->flags & SQLITE_CountRows ){







|







251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
  }

  /* Resolve the column names in the WHERE clause.
  */
  memset(&sNC, 0, sizeof(sNC));
  sNC.pParse = pParse;
  sNC.pSrcList = pTabList;
  if( sqlite3ResolveExprNames(&sNC, pWhere) ){
    goto delete_from_cleanup;
  }

  /* Initialize the counter of the number of rows deleted, if
  ** we are counting rows.
  */
  if( db->flags & SQLITE_CountRows ){
Changes to src/expr.c.
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains routines used for analyzing expressions and
** for generating VDBE code that evaluates expressions in SQLite.
**
** $Id: expr.c,v 1.388 2008/08/07 13:05:35 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>

/*
** Return the 'affinity' of the expression pExpr if any.
**







|







8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains routines used for analyzing expressions and
** for generating VDBE code that evaluates expressions in SQLite.
**
** $Id: expr.c,v 1.389 2008/08/20 16:35:10 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>

/*
** Return the 'affinity' of the expression pExpr if any.
**
39
40
41
42
43
44
45








46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

79
80

81
82








83
84






85
86
87
88
89
90
91
    return sqlite3ExprAffinity(pExpr->pSelect->pEList->a[0].pExpr);
  }
#ifndef SQLITE_OMIT_CAST
  if( op==TK_CAST ){
    return sqlite3AffinityType(&pExpr->token);
  }
#endif








  return pExpr->affinity;
}

/*
** Set the collating sequence for expression pExpr to be the collating
** sequence named by pToken.   Return a pointer to the revised expression.
** The collating sequence is marked as "explicit" using the EP_ExpCollate
** flag.  An explicit collating sequence will override implicit
** collating sequences.
*/
Expr *sqlite3ExprSetColl(Parse *pParse, Expr *pExpr, Token *pName){
  char *zColl = 0;            /* Dequoted name of collation sequence */
  CollSeq *pColl;
  sqlite3 *db = pParse->db;
  zColl = sqlite3NameFromToken(db, pName);
  if( pExpr && zColl ){
    pColl = sqlite3LocateCollSeq(pParse, zColl, -1);
    if( pColl ){
      pExpr->pColl = pColl;
      pExpr->flags |= EP_ExpCollate;
    }
  }
  sqlite3DbFree(db, zColl);
  return pExpr;
}

/*
** Return the default collation sequence for the expression pExpr. If
** there is no default collation type, return 0.
*/
CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
  CollSeq *pColl = 0;
  if( pExpr ){

    int op;
    pColl = pExpr->pColl;

    op = pExpr->op;
    if( (op==TK_CAST || op==TK_UPLUS) && !pColl ){








      return sqlite3ExprCollSeq(pParse, pExpr->pLeft);
    }






  }
  if( sqlite3CheckCollSeq(pParse, pColl) ){ 
    pColl = 0;
  }
  return pColl;
}








>
>
>
>
>
>
>
>










|



|

















|
>

|
>
|
|
>
>
>
>
>
>
>
>
|
|
>
>
>
>
>
>







39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
    return sqlite3ExprAffinity(pExpr->pSelect->pEList->a[0].pExpr);
  }
#ifndef SQLITE_OMIT_CAST
  if( op==TK_CAST ){
    return sqlite3AffinityType(&pExpr->token);
  }
#endif
  if( (op==TK_COLUMN || op==TK_REGISTER) && pExpr->pTab!=0 ){
    /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally
    ** a TK_COLUMN but was previously evaluated and cached in a register */
    int j = pExpr->iColumn;
    if( j<0 ) return SQLITE_AFF_INTEGER;
    assert( pExpr->pTab && j<pExpr->pTab->nCol );
    return pExpr->pTab->aCol[j].affinity;
  }
  return pExpr->affinity;
}

/*
** Set the collating sequence for expression pExpr to be the collating
** sequence named by pToken.   Return a pointer to the revised expression.
** The collating sequence is marked as "explicit" using the EP_ExpCollate
** flag.  An explicit collating sequence will override implicit
** collating sequences.
*/
Expr *sqlite3ExprSetColl(Parse *pParse, Expr *pExpr, Token *pCollName){
  char *zColl = 0;            /* Dequoted name of collation sequence */
  CollSeq *pColl;
  sqlite3 *db = pParse->db;
  zColl = sqlite3NameFromToken(db, pCollName);
  if( pExpr && zColl ){
    pColl = sqlite3LocateCollSeq(pParse, zColl, -1);
    if( pColl ){
      pExpr->pColl = pColl;
      pExpr->flags |= EP_ExpCollate;
    }
  }
  sqlite3DbFree(db, zColl);
  return pExpr;
}

/*
** Return the default collation sequence for the expression pExpr. If
** there is no default collation type, return 0.
*/
CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
  CollSeq *pColl = 0;
  Expr *p = pExpr;
  while( p ){
    int op;
    pColl = p->pColl;
    if( pColl ) break;
    op = p->op;
    if( (op==TK_COLUMN || op==TK_REGISTER) && p->pTab!=0 ){
      /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
      ** a TK_COLUMN but was previously evaluated and cached in a register */
      const char *zColl;
      int j = p->iColumn;
      if( j>=0 ){
        sqlite3 *db = pParse->db;
        zColl = p->pTab->aCol[j].zColl;
        pColl = sqlite3FindCollSeq(db, ENC(db), zColl, -1, 0);
        pExpr->pColl = pColl;
      }
      break;
    }
    if( op!=TK_CAST && op!=TK_UPLUS ){
      break;
    }
    p = p->pLeft;
  }
  if( sqlite3CheckCollSeq(pParse, pColl) ){ 
    pColl = 0;
  }
  return pColl;
}

256
257
258
259
260
261
262
263
264
265
266
267
268
269
270

#if SQLITE_MAX_EXPR_DEPTH>0
/*
** Check that argument nHeight is less than or equal to the maximum
** expression depth allowed. If it is not, leave an error message in
** pParse.
*/
static int checkExprHeight(Parse *pParse, int nHeight){
  int rc = SQLITE_OK;
  int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
  if( nHeight>mxHeight ){
    sqlite3ErrorMsg(pParse, 
       "Expression tree is too large (maximum depth %d)", mxHeight
    );
    rc = SQLITE_ERROR;







|







280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

#if SQLITE_MAX_EXPR_DEPTH>0
/*
** Check that argument nHeight is less than or equal to the maximum
** expression depth allowed. If it is not, leave an error message in
** pParse.
*/
int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
  int rc = SQLITE_OK;
  int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
  if( nHeight>mxHeight ){
    sqlite3ErrorMsg(pParse, 
       "Expression tree is too large (maximum depth %d)", mxHeight
    );
    rc = SQLITE_ERROR;
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
/*
** Set the Expr.nHeight variable using the exprSetHeight() function. If
** the height is greater than the maximum allowed expression depth,
** leave an error in pParse.
*/
void sqlite3ExprSetHeight(Parse *pParse, Expr *p){
  exprSetHeight(p);
  checkExprHeight(pParse, p->nHeight);
}

/*
** Return the maximum height of any expression tree referenced
** by the select statement passed as an argument.
*/
int sqlite3SelectExprHeight(Select *p){
  int nHeight = 0;
  heightOfSelect(p, &nHeight);
  return nHeight;
}
#else
  #define checkExprHeight(x,y)
  #define exprSetHeight(y)
#endif /* SQLITE_MAX_EXPR_DEPTH>0 */

/*
** Construct a new expression node and return a pointer to it.  Memory
** for this node is obtained from sqlite3_malloc().  The calling function
** is responsible for making sure the node eventually gets freed.







|












<







352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371

372
373
374
375
376
377
378
/*
** Set the Expr.nHeight variable using the exprSetHeight() function. If
** the height is greater than the maximum allowed expression depth,
** leave an error in pParse.
*/
void sqlite3ExprSetHeight(Parse *pParse, Expr *p){
  exprSetHeight(p);
  sqlite3ExprCheckHeight(pParse, p->nHeight);
}

/*
** Return the maximum height of any expression tree referenced
** by the select statement passed as an argument.
*/
int sqlite3SelectExprHeight(Select *p){
  int nHeight = 0;
  heightOfSelect(p, &nHeight);
  return nHeight;
}
#else

  #define exprSetHeight(y)
#endif /* SQLITE_MAX_EXPR_DEPTH>0 */

/*
** Construct a new expression node and return a pointer to it.  Memory
** for this node is obtained from sqlite3_malloc().  The calling function
** is responsible for making sure the node eventually gets freed.
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
  int op,                 /* Expression opcode */
  Expr *pLeft,            /* Left operand */
  Expr *pRight,           /* Right operand */
  const Token *pToken     /* Argument token */
){
  Expr *p = sqlite3Expr(pParse->db, op, pLeft, pRight, pToken);
  if( p ){
    checkExprHeight(pParse, p->nHeight);
  }
  return p;
}

/*
** When doing a nested parse, you can include terms in an expression
** that look like this:   #1 #2 ...  These terms refer to registers







|







432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
  int op,                 /* Expression opcode */
  Expr *pLeft,            /* Left operand */
  Expr *pRight,           /* Right operand */
  const Token *pToken     /* Argument token */
){
  Expr *p = sqlite3Expr(pParse->db, op, pLeft, pRight, pToken);
  if( p ){
    sqlite3ExprCheckHeight(pParse, p->nHeight);
  }
  return p;
}

/*
** When doing a nested parse, you can include terms in an expression
** that look like this:   #1 #2 ...  These terms refer to registers
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
  ExprSetProperty(p, EP_Dequoted);
  if( p->token.dyn==0 ){
    sqlite3TokenCopy(db, &p->token, &p->token);
  }
  sqlite3Dequote((char*)p->token.z);
}


/*
** The following group of routines make deep copies of expressions,
** expression lists, ID lists, and select statements.  The copies can
** be deleted (by being passed to their respective ...Delete() routines)
** without effecting the originals.
**
** The expression list, ID, and source lists return by sqlite3ExprListDup(),







<







625
626
627
628
629
630
631

632
633
634
635
636
637
638
  ExprSetProperty(p, EP_Dequoted);
  if( p->token.dyn==0 ){
    sqlite3TokenCopy(db, &p->token, &p->token);
  }
  sqlite3Dequote((char*)p->token.z);
}


/*
** The following group of routines make deep copies of expressions,
** expression lists, ID lists, and select statements.  The copies can
** be deleted (by being passed to their respective ...Delete() routines)
** without effecting the originals.
**
** The expression list, ID, and source lists return by sqlite3ExprListDup(),
673
674
675
676
677
678
679
680
681

682
683
684
685
686
687
688
      sqlite3TokenCopy(db, &pNewExpr->span, &pOldExpr->span);
    }
    assert( pNewExpr==0 || pNewExpr->span.z!=0 
            || pOldExpr->span.z==0
            || db->mallocFailed );
    pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
    pItem->sortOrder = pOldItem->sortOrder;
    pItem->isAgg = pOldItem->isAgg;
    pItem->done = 0;

  }
  return pNew;
}

/*
** If cursors, triggers, views and subqueries are all omitted from
** the build, then none of the following routines, except for 







<

>







695
696
697
698
699
700
701

702
703
704
705
706
707
708
709
710
      sqlite3TokenCopy(db, &pNewExpr->span, &pOldExpr->span);
    }
    assert( pNewExpr==0 || pNewExpr->span.z!=0 
            || pOldExpr->span.z==0
            || db->mallocFailed );
    pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
    pItem->sortOrder = pOldItem->sortOrder;

    pItem->done = 0;
    pItem->iCol = pOldItem->iCol;
  }
  return pNew;
}

/*
** If cursors, triggers, views and subqueries are all omitted from
** the build, then none of the following routines, except for 
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
  return pNew;
}
Select *sqlite3SelectDup(sqlite3 *db, Select *p){
  Select *pNew;
  if( p==0 ) return 0;
  pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
  if( pNew==0 ) return 0;
  pNew->isDistinct = p->isDistinct;
  pNew->pEList = sqlite3ExprListDup(db, p->pEList);
  pNew->pSrc = sqlite3SrcListDup(db, p->pSrc);
  pNew->pWhere = sqlite3ExprDup(db, p->pWhere);
  pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy);
  pNew->pHaving = sqlite3ExprDup(db, p->pHaving);
  pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy);
  pNew->op = p->op;
  pNew->pPrior = sqlite3SelectDup(db, p->pPrior);
  pNew->pLimit = sqlite3ExprDup(db, p->pLimit);
  pNew->pOffset = sqlite3ExprDup(db, p->pOffset);
  pNew->iLimit = 0;
  pNew->iOffset = 0;
  pNew->isResolved = p->isResolved;
  pNew->isAgg = p->isAgg;
  pNew->usesEphm = 0;
  pNew->disallowOrderBy = 0;
  pNew->pRightmost = 0;
  pNew->addrOpenEphm[0] = -1;
  pNew->addrOpenEphm[1] = -1;
  pNew->addrOpenEphm[2] = -1;
  return pNew;
}
#else







<












<
<
|
<







764
765
766
767
768
769
770

771
772
773
774
775
776
777
778
779
780
781
782


783

784
785
786
787
788
789
790
  return pNew;
}
Select *sqlite3SelectDup(sqlite3 *db, Select *p){
  Select *pNew;
  if( p==0 ) return 0;
  pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
  if( pNew==0 ) return 0;

  pNew->pEList = sqlite3ExprListDup(db, p->pEList);
  pNew->pSrc = sqlite3SrcListDup(db, p->pSrc);
  pNew->pWhere = sqlite3ExprDup(db, p->pWhere);
  pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy);
  pNew->pHaving = sqlite3ExprDup(db, p->pHaving);
  pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy);
  pNew->op = p->op;
  pNew->pPrior = sqlite3SelectDup(db, p->pPrior);
  pNew->pLimit = sqlite3ExprDup(db, p->pLimit);
  pNew->pOffset = sqlite3ExprDup(db, p->pOffset);
  pNew->iLimit = 0;
  pNew->iOffset = 0;


  pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;

  pNew->pRightmost = 0;
  pNew->addrOpenEphm[0] = -1;
  pNew->addrOpenEphm[1] = -1;
  pNew->addrOpenEphm[2] = -1;
  return pNew;
}
#else
852
853
854
855
856
857
858

859
860

861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969





970
971







972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
    sqlite3DbFree(db, pItem->zName);
  }
  sqlite3DbFree(db, pList->a);
  sqlite3DbFree(db, pList);
}

/*

** Walk an expression tree.  Call xFunc for each node visited.  xFunc
** is called on the node before xFunc is called on the nodes children.

**
** The return value from xFunc determines whether the tree walk continues.
** 0 means continue walking the tree.  1 means do not walk children
** of the current node but continue with siblings.  2 means abandon
** the tree walk completely.
**
** The return value from this routine is 1 to abandon the tree walk
** and 0 to continue.
**
** NOTICE:  This routine does *not* descend into subqueries.
*/
static int walkExprList(ExprList *, int (*)(void *, Expr*), void *);
static int walkExprTree(Expr *pExpr, int (*xFunc)(void*,Expr*), void *pArg){
  int rc;
  if( pExpr==0 ) return 0;
  rc = (*xFunc)(pArg, pExpr);
  if( rc==0 ){
    if( walkExprTree(pExpr->pLeft, xFunc, pArg) ) return 1;
    if( walkExprTree(pExpr->pRight, xFunc, pArg) ) return 1;
    if( walkExprList(pExpr->pList, xFunc, pArg) ) return 1;
  }
  return rc>1;
}

/*
** Call walkExprTree() for every expression in list p.
*/
static int walkExprList(ExprList *p, int (*xFunc)(void *, Expr*), void *pArg){
  int i;
  struct ExprList_item *pItem;
  if( !p ) return 0;
  for(i=p->nExpr, pItem=p->a; i>0; i--, pItem++){
    if( walkExprTree(pItem->pExpr, xFunc, pArg) ) return 1;
  }
  return 0;
}

/*
** Call walkExprTree() for every expression in Select p, not including
** expressions that are part of sub-selects in any FROM clause or the LIMIT
** or OFFSET expressions..
*/
static int walkSelectExpr(Select *p, int (*xFunc)(void *, Expr*), void *pArg){
  walkExprList(p->pEList, xFunc, pArg);
  walkExprTree(p->pWhere, xFunc, pArg);
  walkExprList(p->pGroupBy, xFunc, pArg);
  walkExprTree(p->pHaving, xFunc, pArg);
  walkExprList(p->pOrderBy, xFunc, pArg);
  if( p->pPrior ){
    walkSelectExpr(p->pPrior, xFunc, pArg);
  }
  return 0;
}


/*
** This routine is designed as an xFunc for walkExprTree().
**
** pArg is really a pointer to an integer.  If we can tell by looking
** at pExpr that the expression that contains pExpr is not a constant
** expression, then set *pArg to 0 and return 2 to abandon the tree walk.
** If pExpr does does not disqualify the expression from being a constant
** then do nothing.
**
** After walking the whole tree, if no nodes are found that disqualify
** the expression as constant, then we assume the whole expression
** is constant.  See sqlite3ExprIsConstant() for additional information.
*/
static int exprNodeIsConstant(void *pArg, Expr *pExpr){
  int *pN = (int*)pArg;

  /* If *pArg is 3 then any term of the expression that comes from
  ** the ON or USING clauses of a join disqualifies the expression
  ** from being considered constant. */
  if( (*pN)==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){
    *pN = 0;
    return 2;
  }

  switch( pExpr->op ){
    /* Consider functions to be constant if all their arguments are constant
    ** and *pArg==2 */
    case TK_FUNCTION:
      if( (*pN)==2 ) return 0;
      /* Fall through */
    case TK_ID:
    case TK_COLUMN:
    case TK_DOT:
    case TK_AGG_FUNCTION:
    case TK_AGG_COLUMN:
#ifndef SQLITE_OMIT_SUBQUERY
    case TK_SELECT:
    case TK_EXISTS:
      testcase( pExpr->op==TK_SELECT );
      testcase( pExpr->op==TK_EXISTS );
#endif
      testcase( pExpr->op==TK_ID );
      testcase( pExpr->op==TK_COLUMN );
      testcase( pExpr->op==TK_DOT );
      testcase( pExpr->op==TK_AGG_FUNCTION );
      testcase( pExpr->op==TK_AGG_COLUMN );
      *pN = 0;
      return 2;
    case TK_IN:
      if( pExpr->pSelect ){
        *pN = 0;
        return 2;
      }
    default:





      return 0;
  }







}

/*
** Walk an expression tree.  Return 1 if the expression is constant
** and 0 if it involves variables or function calls.
**
** For the purposes of this function, a double-quoted string (ex: "abc")
** is considered a variable but a single-quoted string (ex: 'abc') is
** a constant.
*/
int sqlite3ExprIsConstant(Expr *p){
  int isConst = 1;
  walkExprTree(p, exprNodeIsConstant, &isConst);
  return isConst;
}

/*
** Walk an expression tree.  Return 1 if the expression is constant
** that does no originate from the ON or USING clauses of a join.
** Return 0 if it involves variables or function calls or terms from
** an ON or USING clause.
*/
int sqlite3ExprIsConstantNotJoin(Expr *p){
  int isConst = 3;
  walkExprTree(p, exprNodeIsConstant, &isConst);
  return isConst!=0;
}

/*
** Walk an expression tree.  Return 1 if the expression is constant
** or a function call with constant arguments.  Return and 0 if there
** are any variables.
**
** For the purposes of this function, a double-quoted string (ex: "abc")
** is considered a variable but a single-quoted string (ex: 'abc') is
** a constant.
*/
int sqlite3ExprIsConstantOrFunction(Expr *p){
  int isConst = 2;
  walkExprTree(p, exprNodeIsConstant, &isConst);
  return isConst!=0;
}

/*
** If the expression p codes a constant integer that is small enough
** to fit in a 32-bit integer, return 1 and put the value of the integer
** in *pValue.  If the expression is not an integer or if it is too big
** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.







>
|
<
>
|
<
<
<
<

|
<

<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
<
<
<
<
<
<
<
<
<
<
<
<
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
<
<
<

<
<
<
<
<
<
<
<
<

|
<

|


|
|
|




|

|

















|
|


|
|


>
>
>
>
>
|
|
>
>
>
>
>
>
>











<
<
|









<
<
|












<
<
|







870
871
872
873
874
875
876
877
878

879
880




881
882

883














884












885
















886



887









888
889

890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953


954
955
956
957
958
959
960
961
962
963


964
965
966
967
968
969
970
971
972
973
974
975
976


977
978
979
980
981
982
983
984
    sqlite3DbFree(db, pItem->zName);
  }
  sqlite3DbFree(db, pList->a);
  sqlite3DbFree(db, pList);
}

/*
** These routines are Walker callbacks.  Walker.u.pi is a pointer
** to an integer.  These routines are checking an expression to see

** if it is a constant.  Set *Walker.u.pi to 0 if the expression is
** not constant.




**
** These callback routines are used to implement the following:

**














**     sqlite3ExprIsConstant()












**     sqlite3ExprIsConstantNotJoin()
















**     sqlite3ExprIsConstantOrFunction()



**









*/
static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){


  /* If pWalker->u.i is 3 then any term of the expression that comes from
  ** the ON or USING clauses of a join disqualifies the expression
  ** from being considered constant. */
  if( pWalker->u.i==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){
    pWalker->u.i = 0;
    return WRC_Abort;
  }

  switch( pExpr->op ){
    /* Consider functions to be constant if all their arguments are constant
    ** and pWalker->u.i==2 */
    case TK_FUNCTION:
      if( pWalker->u.i==2 ) return 0;
      /* Fall through */
    case TK_ID:
    case TK_COLUMN:
    case TK_DOT:
    case TK_AGG_FUNCTION:
    case TK_AGG_COLUMN:
#ifndef SQLITE_OMIT_SUBQUERY
    case TK_SELECT:
    case TK_EXISTS:
      testcase( pExpr->op==TK_SELECT );
      testcase( pExpr->op==TK_EXISTS );
#endif
      testcase( pExpr->op==TK_ID );
      testcase( pExpr->op==TK_COLUMN );
      testcase( pExpr->op==TK_DOT );
      testcase( pExpr->op==TK_AGG_FUNCTION );
      testcase( pExpr->op==TK_AGG_COLUMN );
      pWalker->u.i = 0;
      return WRC_Abort;
    case TK_IN:
      if( pExpr->pSelect ){
        pWalker->u.i = 0;
        return WRC_Abort;
      }
    default:
      return WRC_Continue;
  }
}
static int selectNodeIsConstant(Walker *pWalker, Select *pSelect){
  pWalker->u.i = 0;
  return WRC_Abort;
}
static int exprIsConst(Expr *p, int initFlag){
  Walker w;
  w.u.i = initFlag;
  w.xExprCallback = exprNodeIsConstant;
  w.xSelectCallback = selectNodeIsConstant;
  sqlite3WalkExpr(&w, p);
  return w.u.i;
}

/*
** Walk an expression tree.  Return 1 if the expression is constant
** and 0 if it involves variables or function calls.
**
** For the purposes of this function, a double-quoted string (ex: "abc")
** is considered a variable but a single-quoted string (ex: 'abc') is
** a constant.
*/
int sqlite3ExprIsConstant(Expr *p){


  return exprIsConst(p, 1);
}

/*
** Walk an expression tree.  Return 1 if the expression is constant
** that does no originate from the ON or USING clauses of a join.
** Return 0 if it involves variables or function calls or terms from
** an ON or USING clause.
*/
int sqlite3ExprIsConstantNotJoin(Expr *p){


  return exprIsConst(p, 3);
}

/*
** Walk an expression tree.  Return 1 if the expression is constant
** or a function call with constant arguments.  Return and 0 if there
** are any variables.
**
** For the purposes of this function, a double-quoted string (ex: "abc")
** is considered a variable but a single-quoted string (ex: 'abc') is
** a constant.
*/
int sqlite3ExprIsConstantOrFunction(Expr *p){


  return exprIsConst(p, 2);
}

/*
** If the expression p codes a constant integer that is small enough
** to fit in a 32-bit integer, return 1 and put the value of the integer
** in *pValue.  If the expression is not an integer or if it is too big
** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
int sqlite3IsRowid(const char *z){
  if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
  if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
  if( sqlite3StrICmp(z, "OID")==0 ) return 1;
  return 0;
}

/*
** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up
** that name in the set of source tables in pSrcList and make the pExpr 
** expression node refer back to that source column.  The following changes
** are made to pExpr:
**
**    pExpr->iDb           Set the index in db->aDb[] of the database holding
**                         the table.
**    pExpr->iTable        Set to the cursor number for the table obtained
**                         from pSrcList.
**    pExpr->iColumn       Set to the column number within the table.
**    pExpr->op            Set to TK_COLUMN.
**    pExpr->pLeft         Any expression this points to is deleted
**    pExpr->pRight        Any expression this points to is deleted.
**
** The pDbToken is the name of the database (the "X").  This value may be
** NULL meaning that name is of the form Y.Z or Z.  Any available database
** can be used.  The pTableToken is the name of the table (the "Y").  This
** value can be NULL if pDbToken is also NULL.  If pTableToken is NULL it
** means that the form of the name is Z and that columns from any table
** can be used.
**
** If the name cannot be resolved unambiguously, leave an error message
** in pParse and return non-zero.  Return zero on success.
*/
static int lookupName(
  Parse *pParse,       /* The parsing context */
  Token *pDbToken,     /* Name of the database containing table, or NULL */
  Token *pTableToken,  /* Name of table containing column, or NULL */
  Token *pColumnToken, /* Name of the column. */
  NameContext *pNC,    /* The name context used to resolve the name */
  Expr *pExpr          /* Make this EXPR node point to the selected column */
){
  char *zDb = 0;       /* Name of the database.  The "X" in X.Y.Z */
  char *zTab = 0;      /* Name of the table.  The "Y" in X.Y.Z or Y.Z */
  char *zCol = 0;      /* Name of the column.  The "Z" */
  int i, j;            /* Loop counters */
  int cnt = 0;         /* Number of matching column names */
  int cntTab = 0;      /* Number of matching table names */
  sqlite3 *db = pParse->db;  /* The database */
  struct SrcList_item *pItem;       /* Use for looping over pSrcList items */
  struct SrcList_item *pMatch = 0;  /* The matching pSrcList item */
  NameContext *pTopNC = pNC;        /* First namecontext in the list */
  Schema *pSchema = 0;              /* Schema of the expression */

  assert( pColumnToken && pColumnToken->z ); /* The Z in X.Y.Z cannot be NULL */
  zDb = sqlite3NameFromToken(db, pDbToken);
  zTab = sqlite3NameFromToken(db, pTableToken);
  zCol = sqlite3NameFromToken(db, pColumnToken);
  if( db->mallocFailed ){
    goto lookupname_end;
  }

  pExpr->iTable = -1;
  while( pNC && cnt==0 ){
    ExprList *pEList;
    SrcList *pSrcList = pNC->pSrcList;

    if( pSrcList ){
      for(i=0, pItem=pSrcList->a; i<pSrcList->nSrc; i++, pItem++){
        Table *pTab;
        int iDb;
        Column *pCol;
  
        pTab = pItem->pTab;
        assert( pTab!=0 );
        iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
        assert( pTab->nCol>0 );
        if( zTab ){
          if( pItem->zAlias ){
            char *zTabName = pItem->zAlias;
            if( sqlite3StrICmp(zTabName, zTab)!=0 ) continue;
          }else{
            char *zTabName = pTab->zName;
            if( zTabName==0 || sqlite3StrICmp(zTabName, zTab)!=0 ) continue;
            if( zDb!=0 && sqlite3StrICmp(db->aDb[iDb].zName, zDb)!=0 ){
              continue;
            }
          }
        }
        if( 0==(cntTab++) ){
          pExpr->iTable = pItem->iCursor;
          pSchema = pTab->pSchema;
          pMatch = pItem;
        }
        for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){
          if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
            const char *zColl = pTab->aCol[j].zColl;
            IdList *pUsing;
            cnt++;
            pExpr->iTable = pItem->iCursor;
            pMatch = pItem;
            pSchema = pTab->pSchema;
            /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */
            pExpr->iColumn = j==pTab->iPKey ? -1 : j;
            pExpr->affinity = pTab->aCol[j].affinity;
            if( (pExpr->flags & EP_ExpCollate)==0 ){
              pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0);
            }
            if( i<pSrcList->nSrc-1 ){
              if( pItem[1].jointype & JT_NATURAL ){
                /* If this match occurred in the left table of a natural join,
                ** then skip the right table to avoid a duplicate match */
                pItem++;
                i++;
              }else if( (pUsing = pItem[1].pUsing)!=0 ){
                /* If this match occurs on a column that is in the USING clause
                ** of a join, skip the search of the right table of the join
                ** to avoid a duplicate match there. */
                int k;
                for(k=0; k<pUsing->nId; k++){
                  if( sqlite3StrICmp(pUsing->a[k].zName, zCol)==0 ){
                    pItem++;
                    i++;
                    break;
                  }
                }
              }
            }
            break;
          }
        }
      }
    }

#ifndef SQLITE_OMIT_TRIGGER
    /* If we have not already resolved the name, then maybe 
    ** it is a new.* or old.* trigger argument reference
    */
    if( zDb==0 && zTab!=0 && cnt==0 && pParse->trigStack!=0 ){
      TriggerStack *pTriggerStack = pParse->trigStack;
      Table *pTab = 0;
      u32 *piColMask;
      if( pTriggerStack->newIdx != -1 && sqlite3StrICmp("new", zTab) == 0 ){
        pExpr->iTable = pTriggerStack->newIdx;
        assert( pTriggerStack->pTab );
        pTab = pTriggerStack->pTab;
        piColMask = &(pTriggerStack->newColMask);
      }else if( pTriggerStack->oldIdx != -1 && sqlite3StrICmp("old", zTab)==0 ){
        pExpr->iTable = pTriggerStack->oldIdx;
        assert( pTriggerStack->pTab );
        pTab = pTriggerStack->pTab;
        piColMask = &(pTriggerStack->oldColMask);
      }

      if( pTab ){ 
        int iCol;
        Column *pCol = pTab->aCol;

        pSchema = pTab->pSchema;
        cntTab++;
        for(iCol=0; iCol < pTab->nCol; iCol++, pCol++) {
          if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
            const char *zColl = pTab->aCol[iCol].zColl;
            cnt++;
            pExpr->iColumn = iCol==pTab->iPKey ? -1 : iCol;
            pExpr->affinity = pTab->aCol[iCol].affinity;
            if( (pExpr->flags & EP_ExpCollate)==0 ){
              pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0);
            }
            pExpr->pTab = pTab;
            if( iCol>=0 ){
              testcase( iCol==31 );
              testcase( iCol==32 );
              *piColMask |= ((u32)1<<iCol) | (iCol>=32?0xffffffff:0);
            }
            break;
          }
        }
      }
    }
#endif /* !defined(SQLITE_OMIT_TRIGGER) */

    /*
    ** Perhaps the name is a reference to the ROWID
    */
    if( cnt==0 && cntTab==1 && sqlite3IsRowid(zCol) ){
      cnt = 1;
      pExpr->iColumn = -1;
      pExpr->affinity = SQLITE_AFF_INTEGER;
    }

    /*
    ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z
    ** might refer to an result-set alias.  This happens, for example, when
    ** we are resolving names in the WHERE clause of the following command:
    **
    **     SELECT a+b AS x FROM table WHERE x<10;
    **
    ** In cases like this, replace pExpr with a copy of the expression that
    ** forms the result set entry ("a+b" in the example) and return immediately.
    ** Note that the expression in the result set should have already been
    ** resolved by the time the WHERE clause is resolved.
    */
    if( cnt==0 && (pEList = pNC->pEList)!=0 && zTab==0 ){
      for(j=0; j<pEList->nExpr; j++){
        char *zAs = pEList->a[j].zName;
        if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){
          Expr *pDup, *pOrig;
          assert( pExpr->pLeft==0 && pExpr->pRight==0 );
          assert( pExpr->pList==0 );
          assert( pExpr->pSelect==0 );
          pOrig = pEList->a[j].pExpr;
          if( !pNC->allowAgg && ExprHasProperty(pOrig, EP_Agg) ){
            sqlite3ErrorMsg(pParse, "misuse of aliased aggregate %s", zAs);
            sqlite3DbFree(db, zCol);
            return 2;
          }
          pDup = sqlite3ExprDup(db, pOrig);
          if( pExpr->flags & EP_ExpCollate ){
            pDup->pColl = pExpr->pColl;
            pDup->flags |= EP_ExpCollate;
          }
          if( pExpr->span.dyn ) sqlite3DbFree(db, (char*)pExpr->span.z);
          if( pExpr->token.dyn ) sqlite3DbFree(db, (char*)pExpr->token.z);
          memcpy(pExpr, pDup, sizeof(*pExpr));
          sqlite3DbFree(db, pDup);
          cnt = 1;
          pMatch = 0;
          assert( zTab==0 && zDb==0 );
          goto lookupname_end_2;
        }
      } 
    }

    /* Advance to the next name context.  The loop will exit when either
    ** we have a match (cnt>0) or when we run out of name contexts.
    */
    if( cnt==0 ){
      pNC = pNC->pNext;
    }
  }

  /*
  ** If X and Y are NULL (in other words if only the column name Z is
  ** supplied) and the value of Z is enclosed in double-quotes, then
  ** Z is a string literal if it doesn't match any column names.  In that
  ** case, we need to return right away and not make any changes to
  ** pExpr.
  **
  ** Because no reference was made to outer contexts, the pNC->nRef
  ** fields are not changed in any context.
  */
  if( cnt==0 && zTab==0 && pColumnToken->z[0]=='"' ){
    sqlite3DbFree(db, zCol);
    pExpr->op = TK_STRING;
    return 0;
  }

  /*
  ** cnt==0 means there was not match.  cnt>1 means there were two or
  ** more matches.  Either way, we have an error.
  */
  if( cnt!=1 ){
    const char *zErr;
    zErr = cnt==0 ? "no such column" : "ambiguous column name";
    if( zDb ){
      sqlite3ErrorMsg(pParse, "%s: %s.%s.%s", zErr, zDb, zTab, zCol);
    }else if( zTab ){
      sqlite3ErrorMsg(pParse, "%s: %s.%s", zErr, zTab, zCol);
    }else{
      sqlite3ErrorMsg(pParse, "%s: %s", zErr, zCol);
    }
    pTopNC->nErr++;
  }

  /* If a column from a table in pSrcList is referenced, then record
  ** this fact in the pSrcList.a[].colUsed bitmask.  Column 0 causes
  ** bit 0 to be set.  Column 1 sets bit 1.  And so forth.  If the
  ** column number is greater than the number of bits in the bitmask
  ** then set the high-order bit of the bitmask.
  */
  if( pExpr->iColumn>=0 && pMatch!=0 ){
    int n = pExpr->iColumn;
    testcase( n==sizeof(Bitmask)*8-1 );
    if( n>=sizeof(Bitmask)*8 ){
      n = sizeof(Bitmask)*8-1;
    }
    assert( pMatch->iCursor==pExpr->iTable );
    pMatch->colUsed |= ((Bitmask)1)<<n;
  }

lookupname_end:
  /* Clean up and return
  */
  sqlite3DbFree(db, zDb);
  sqlite3DbFree(db, zTab);
  sqlite3ExprDelete(db, pExpr->pLeft);
  pExpr->pLeft = 0;
  sqlite3ExprDelete(db, pExpr->pRight);
  pExpr->pRight = 0;
  pExpr->op = TK_COLUMN;
lookupname_end_2:
  sqlite3DbFree(db, zCol);
  if( cnt==1 ){
    assert( pNC!=0 );
    sqlite3AuthRead(pParse, pExpr, pSchema, pNC->pSrcList);
    if( pMatch && !pMatch->pSelect ){
      pExpr->pTab = pMatch->pTab;
    }
    /* Increment the nRef value on all name contexts from TopNC up to
    ** the point where the name matched. */
    for(;;){
      assert( pTopNC!=0 );
      pTopNC->nRef++;
      if( pTopNC==pNC ) break;
      pTopNC = pTopNC->pNext;
    }
    return 0;
  } else {
    return 1;
  }
}

/*
** This routine is designed as an xFunc for walkExprTree().
**
** Resolve symbolic names into TK_COLUMN operators for the current
** node in the expression tree.  Return 0 to continue the search down
** the tree or 2 to abort the tree walk.
**
** This routine also does error checking and name resolution for
** function names.  The operator for aggregate functions is changed
** to TK_AGG_FUNCTION.
*/
static int nameResolverStep(void *pArg, Expr *pExpr){
  NameContext *pNC = (NameContext*)pArg;
  Parse *pParse;

  if( pExpr==0 ) return 1;
  assert( pNC!=0 );
  pParse = pNC->pParse;

  if( ExprHasAnyProperty(pExpr, EP_Resolved) ) return 1;
  ExprSetProperty(pExpr, EP_Resolved);
#ifndef NDEBUG
  if( pNC->pSrcList && pNC->pSrcList->nAlloc>0 ){
    SrcList *pSrcList = pNC->pSrcList;
    int i;
    for(i=0; i<pNC->pSrcList->nSrc; i++){
      assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursor<pParse->nTab);
    }
  }
#endif
  switch( pExpr->op ){
    /* A lone identifier is the name of a column.
    */
    case TK_ID: {
      lookupName(pParse, 0, 0, &pExpr->token, pNC, pExpr);
      return 1;
    }
  
    /* A table name and column name:     ID.ID
    ** Or a database, table and column:  ID.ID.ID
    */
    case TK_DOT: {
      Token *pColumn;
      Token *pTable;
      Token *pDb;
      Expr *pRight;

      /* if( pSrcList==0 ) break; */
      pRight = pExpr->pRight;
      if( pRight->op==TK_ID ){
        pDb = 0;
        pTable = &pExpr->pLeft->token;
        pColumn = &pRight->token;
      }else{
        assert( pRight->op==TK_DOT );
        pDb = &pExpr->pLeft->token;
        pTable = &pRight->pLeft->token;
        pColumn = &pRight->pRight->token;
      }
      lookupName(pParse, pDb, pTable, pColumn, pNC, pExpr);
      return 1;
    }

    /* Resolve function names
    */
    case TK_CONST_FUNC:
    case TK_FUNCTION: {
      ExprList *pList = pExpr->pList;    /* The argument list */
      int n = pList ? pList->nExpr : 0;  /* Number of arguments */
      int no_such_func = 0;       /* True if no such function exists */
      int wrong_num_args = 0;     /* True if wrong number of arguments */
      int is_agg = 0;             /* True if is an aggregate function */
      int i;
      int auth;                   /* Authorization to use the function */
      int nId;                    /* Number of characters in function name */
      const char *zId;            /* The function name. */
      FuncDef *pDef;              /* Information about the function */
      int enc = ENC(pParse->db);  /* The database encoding */

      zId = (char*)pExpr->token.z;
      nId = pExpr->token.n;
      pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0);
      if( pDef==0 ){
        pDef = sqlite3FindFunction(pParse->db, zId, nId, -1, enc, 0);
        if( pDef==0 ){
          no_such_func = 1;
        }else{
          wrong_num_args = 1;
        }
      }else{
        is_agg = pDef->xFunc==0;
      }
#ifndef SQLITE_OMIT_AUTHORIZATION
      if( pDef ){
        auth = sqlite3AuthCheck(pParse, SQLITE_FUNCTION, 0, pDef->zName, 0);
        if( auth!=SQLITE_OK ){
          if( auth==SQLITE_DENY ){
            sqlite3ErrorMsg(pParse, "not authorized to use function: %s",
                                    pDef->zName);
            pNC->nErr++;
          }
          pExpr->op = TK_NULL;
          return 1;
        }
      }
#endif
      if( is_agg && !pNC->allowAgg ){
        sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId);
        pNC->nErr++;
        is_agg = 0;
      }else if( no_such_func ){
        sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId);
        pNC->nErr++;
      }else if( wrong_num_args ){
        sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()",
             nId, zId);
        pNC->nErr++;
      }
      if( is_agg ){
        pExpr->op = TK_AGG_FUNCTION;
        pNC->hasAgg = 1;
      }
      if( is_agg ) pNC->allowAgg = 0;
      for(i=0; pNC->nErr==0 && i<n; i++){
        walkExprTree(pList->a[i].pExpr, nameResolverStep, pNC);
      }
      if( is_agg ) pNC->allowAgg = 1;
      /* FIX ME:  Compute pExpr->affinity based on the expected return
      ** type of the function 
      */
      return is_agg;
    }
#ifndef SQLITE_OMIT_SUBQUERY
    case TK_SELECT:
    case TK_EXISTS:
#endif
    case TK_IN: {
      if( pExpr->pSelect ){
        int nRef = pNC->nRef;
#ifndef SQLITE_OMIT_CHECK
        if( pNC->isCheck ){
          sqlite3ErrorMsg(pParse,"subqueries prohibited in CHECK constraints");
        }
#endif
        sqlite3SelectResolve(pParse, pExpr->pSelect, pNC);
        assert( pNC->nRef>=nRef );
        if( nRef!=pNC->nRef ){
          ExprSetProperty(pExpr, EP_VarSelect);
        }
      }
      break;
    }
#ifndef SQLITE_OMIT_CHECK
    case TK_VARIABLE: {
      if( pNC->isCheck ){
        sqlite3ErrorMsg(pParse,"parameters prohibited in CHECK constraints");
      }
      break;
    }
#endif
  }
  return 0;
}

/*
** This routine walks an expression tree and resolves references to
** table columns.  Nodes of the form ID.ID or ID resolve into an
** index to the table in the table list and a column offset.  The 
** Expr.opcode for such nodes is changed to TK_COLUMN.  The Expr.iTable
** value is changed to the index of the referenced table in pTabList
** plus the "base" value.  The base value will ultimately become the
** VDBE cursor number for a cursor that is pointing into the referenced
** table.  The Expr.iColumn value is changed to the index of the column 
** of the referenced table.  The Expr.iColumn value for the special
** ROWID column is -1.  Any INTEGER PRIMARY KEY column is tried as an
** alias for ROWID.
**
** Also resolve function names and check the functions for proper
** usage.  Make sure all function names are recognized and all functions
** have the correct number of arguments.  Leave an error message
** in pParse->zErrMsg if anything is amiss.  Return the number of errors.
**
** If the expression contains aggregate functions then set the EP_Agg
** property on the expression.
*/
int sqlite3ExprResolveNames( 
  NameContext *pNC,       /* Namespace to resolve expressions in. */
  Expr *pExpr             /* The expression to be analyzed. */
){
  int savedHasAgg;

  if( pExpr==0 ) return 0;
#if SQLITE_MAX_EXPR_DEPTH>0
  {
    if( checkExprHeight(pNC->pParse, pExpr->nHeight + pNC->pParse->nHeight) ){
      return 1;
    }
    pNC->pParse->nHeight += pExpr->nHeight;
  }
#endif
  savedHasAgg = pNC->hasAgg;
  pNC->hasAgg = 0;
  walkExprTree(pExpr, nameResolverStep, pNC);
#if SQLITE_MAX_EXPR_DEPTH>0
  pNC->pParse->nHeight -= pExpr->nHeight;
#endif
  if( pNC->nErr>0 ){
    ExprSetProperty(pExpr, EP_Error);
  }
  if( pNC->hasAgg ){
    ExprSetProperty(pExpr, EP_Agg);
  }else if( savedHasAgg ){
    pNC->hasAgg = 1;
  }
  return ExprHasProperty(pExpr, EP_Error);
}

/*
** A pointer instance of this structure is used to pass information
** through walkExprTree into codeSubqueryStep().
*/
typedef struct QueryCoder QueryCoder;
struct QueryCoder {
  Parse *pParse;       /* The parsing context */
  NameContext *pNC;    /* Namespace of first enclosing query */
};

#ifdef SQLITE_TEST
  int sqlite3_enable_in_opt = 1;
#else
  #define sqlite3_enable_in_opt 1
#endif

/*







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







1022
1023
1024
1025
1026
1027
1028





























































































































































































































































































































































































































































































































































1029
1030
1031
1032
1033
1034
1035
int sqlite3IsRowid(const char *z){
  if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
  if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
  if( sqlite3StrICmp(z, "OID")==0 ) return 1;
  return 0;
}






























































































































































































































































































































































































































































































































































#ifdef SQLITE_TEST
  int sqlite3_enable_in_opt = 1;
#else
  #define sqlite3_enable_in_opt 1
#endif

/*
1622
1623
1624
1625
1626
1627
1628
1629
1630

1631
1632
1633
1634
1635
1636
1637
static int isCandidateForInOpt(Select *p){
  SrcList *pSrc;
  ExprList *pEList;
  Table *pTab;
  if( !sqlite3_enable_in_opt ) return 0; /* IN optimization must be enabled */
  if( p==0 ) return 0;                   /* right-hand side of IN is SELECT */
  if( p->pPrior ) return 0;              /* Not a compound SELECT */
  if( p->isDistinct ) return 0;          /* No DISTINCT keyword */
  if( p->isAgg ) return 0;               /* Contains no aggregate functions */

  if( p->pGroupBy ) return 0;            /* Has no GROUP BY clause */
  if( p->pLimit ) return 0;              /* Has no LIMIT clause */
  if( p->pOffset ) return 0;
  if( p->pWhere ) return 0;              /* Has no WHERE clause */
  pSrc = p->pSrc;
  if( pSrc==0 ) return 0;                /* A single table in the FROM clause */
  if( pSrc->nSrc!=1 ) return 0;







|
|
>







1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
static int isCandidateForInOpt(Select *p){
  SrcList *pSrc;
  ExprList *pEList;
  Table *pTab;
  if( !sqlite3_enable_in_opt ) return 0; /* IN optimization must be enabled */
  if( p==0 ) return 0;                   /* right-hand side of IN is SELECT */
  if( p->pPrior ) return 0;              /* Not a compound SELECT */
  if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
      return 0; /* No DISTINCT keyword and no aggregate functions */
  }
  if( p->pGroupBy ) return 0;            /* Has no GROUP BY clause */
  if( p->pLimit ) return 0;              /* Has no LIMIT clause */
  if( p->pOffset ) return 0;
  if( p->pWhere ) return 0;              /* Has no WHERE clause */
  pSrc = p->pSrc;
  if( pSrc==0 ) return 0;                /* A single table in the FROM clause */
  if( pSrc->nSrc!=1 ) return 0;
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
        */
        SelectDest dest;
        ExprList *pEList;

        sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
        dest.affinity = (int)affinity;
        assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
        if( sqlite3Select(pParse, pExpr->pSelect, &dest, 0, 0, 0) ){
          return;
        }
        pEList = pExpr->pSelect->pEList;
        if( pEList && pEList->nExpr>0 ){ 
          keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
              pEList->a[0].pExpr);
        }







|







1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
        */
        SelectDest dest;
        ExprList *pEList;

        sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
        dest.affinity = (int)affinity;
        assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
        if( sqlite3Select(pParse, pExpr->pSelect, &dest) ){
          return;
        }
        pEList = pExpr->pSelect->pEList;
        if( pEList && pEList->nExpr>0 ){ 
          keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
              pEList->a[0].pExpr);
        }
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
        ExprList *pList = pExpr->pList;
        struct ExprList_item *pItem;
        int r1, r2, r3;

        if( !affinity ){
          affinity = SQLITE_AFF_NONE;
        }
        keyInfo.aColl[0] = pExpr->pLeft->pColl;

        /* Loop through each expression in <exprlist>. */
        r1 = sqlite3GetTempReg(pParse);
        r2 = sqlite3GetTempReg(pParse);
        for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
          Expr *pE2 = pItem->pExpr;








|







1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
        ExprList *pList = pExpr->pList;
        struct ExprList_item *pItem;
        int r1, r2, r3;

        if( !affinity ){
          affinity = SQLITE_AFF_NONE;
        }
        keyInfo.aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);

        /* Loop through each expression in <exprlist>. */
        r1 = sqlite3GetTempReg(pParse);
        r2 = sqlite3GetTempReg(pParse);
        for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
          Expr *pE2 = pItem->pExpr;

1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
      }else{
        dest.eDest = SRT_Exists;
        sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iParm);
        VdbeComment((v, "Init EXISTS result"));
      }
      sqlite3ExprDelete(pParse->db, pSel->pLimit);
      pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &one);
      if( sqlite3Select(pParse, pSel, &dest, 0, 0, 0) ){
        return;
      }
      pExpr->iColumn = dest.iParm;
      break;
    }
  }








|







1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
      }else{
        dest.eDest = SRT_Exists;
        sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iParm);
        VdbeComment((v, "Init EXISTS result"));
      }
      sqlite3ExprDelete(pParse->db, pSel->pLimit);
      pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &one);
      if( sqlite3Select(pParse, pSel, &dest) ){
        return;
      }
      pExpr->iColumn = dest.iParm;
      break;
    }
  }

2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
      endLabel = sqlite3VdbeMakeLabel(v);
      if( (pX = pExpr->pLeft)!=0 ){
        cacheX = *pX;
        testcase( pX->op==TK_COLUMN || pX->op==TK_REGISTER );
        cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, &regFree1);
        testcase( regFree1==0 );
        cacheX.op = TK_REGISTER;
        cacheX.iColumn = 0;
        opCompare.op = TK_EQ;
        opCompare.pLeft = &cacheX;
        pTest = &opCompare;
      }
      pParse->disableColCache++;
      for(i=0; i<nExpr; i=i+2){
        if( pX ){







<







2166
2167
2168
2169
2170
2171
2172

2173
2174
2175
2176
2177
2178
2179
      endLabel = sqlite3VdbeMakeLabel(v);
      if( (pX = pExpr->pLeft)!=0 ){
        cacheX = *pX;
        testcase( pX->op==TK_COLUMN || pX->op==TK_REGISTER );
        cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, &regFree1);
        testcase( regFree1==0 );
        cacheX.op = TK_REGISTER;

        opCompare.op = TK_EQ;
        opCompare.pLeft = &cacheX;
        pTest = &opCompare;
      }
      pParse->disableColCache++;
      for(i=0; i<nExpr; i=i+2){
        if( pX ){
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
  inReg = sqlite3ExprCode(pParse, pExpr, target);
  assert( target>0 );
  if( pExpr->op!=TK_REGISTER ){  
    int iMem;
    iMem = ++pParse->nMem;
    sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem);
    pExpr->iTable = iMem;
    pExpr->iColumn = pExpr->op;
    pExpr->op = TK_REGISTER;
  }
  return inReg;
}

/*
** Return TRUE if pExpr is an constant expression that is appropriate







<







2285
2286
2287
2288
2289
2290
2291

2292
2293
2294
2295
2296
2297
2298
  inReg = sqlite3ExprCode(pParse, pExpr, target);
  assert( target>0 );
  if( pExpr->op!=TK_REGISTER ){  
    int iMem;
    iMem = ++pParse->nMem;
    sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem);
    pExpr->iTable = iMem;

    pExpr->op = TK_REGISTER;
  }
  return inReg;
}

/*
** Return TRUE if pExpr is an constant expression that is appropriate
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947

/*
** If pExpr is a constant expression that is appropriate for
** factoring out of a loop, then evaluate the expression
** into a register and convert the expression into a TK_REGISTER
** expression.
*/
static int evalConstExpr(void *pArg, Expr *pExpr){
  Parse *pParse = (Parse*)pArg;
  switch( pExpr->op ){
    case TK_REGISTER: {
      return 1;
    }
    case TK_FUNCTION:
    case TK_AGG_FUNCTION:
    case TK_CONST_FUNC: {







|
|







2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370

/*
** If pExpr is a constant expression that is appropriate for
** factoring out of a loop, then evaluate the expression
** into a register and convert the expression into a TK_REGISTER
** expression.
*/
static int evalConstExpr(Walker *pWalker, Expr *pExpr){
  Parse *pParse = pWalker->pParse;
  switch( pExpr->op ){
    case TK_REGISTER: {
      return 1;
    }
    case TK_FUNCTION:
    case TK_AGG_FUNCTION:
    case TK_CONST_FUNC: {
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981

2982



2983
2984
2985
2986
2987
2988
2989
    }
  }
  if( isAppropriateForFactoring(pExpr) ){
    int r1 = ++pParse->nMem;
    int r2;
    r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
    if( r1!=r2 ) sqlite3ReleaseTempReg(pParse, r1);
    pExpr->iColumn = pExpr->op;
    pExpr->op = TK_REGISTER;
    pExpr->iTable = r2;
    return 1;
  }
  return 0;
}

/*
** Preevaluate constant subexpressions within pExpr and store the
** results in registers.  Modify pExpr so that the constant subexpresions
** are TK_REGISTER opcodes that refer to the precomputed values.
*/
void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){

   walkExprTree(pExpr, evalConstExpr, pParse);



}


/*
** Generate code that pushes the value of every element of the given
** expression list into a sequence of registers beginning at target.
**







<


|

|








>
|
>
>
>







2384
2385
2386
2387
2388
2389
2390

2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
    }
  }
  if( isAppropriateForFactoring(pExpr) ){
    int r1 = ++pParse->nMem;
    int r2;
    r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
    if( r1!=r2 ) sqlite3ReleaseTempReg(pParse, r1);

    pExpr->op = TK_REGISTER;
    pExpr->iTable = r2;
    return WRC_Prune;
  }
  return WRC_Continue;
}

/*
** Preevaluate constant subexpressions within pExpr and store the
** results in registers.  Modify pExpr so that the constant subexpresions
** are TK_REGISTER opcodes that refer to the precomputed values.
*/
void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){
  Walker w;
  w.xExprCallback = evalConstExpr;
  w.xSelectCallback = 0;
  w.pParse = pParse;
  sqlite3WalkExpr(&w, pExpr);
}


/*
** Generate code that pushes the value of every element of the given
** expression list into a sequence of registers beginning at target.
**
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
       &pInfo->nFuncAlloc,
       &i
  );
  return i;
}    

/*
** This is an xFunc for walkExprTree() used to implement 
** sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
** for additional information.
**
** This routine analyzes the aggregate function at pExpr.
*/
static int analyzeAggregate(void *pArg, Expr *pExpr){
  int i;
  NameContext *pNC = (NameContext *)pArg;
  Parse *pParse = pNC->pParse;
  SrcList *pSrcList = pNC->pSrcList;
  AggInfo *pAggInfo = pNC->pAggInfo;

  switch( pExpr->op ){
    case TK_AGG_COLUMN:
    case TK_COLUMN: {







|
|

<
<

|

|







2801
2802
2803
2804
2805
2806
2807
2808
2809
2810


2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
       &pInfo->nFuncAlloc,
       &i
  );
  return i;
}    

/*
** This is the xExprCallback for a tree walker.  It is used to
** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
** for additional information.


*/
static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
  int i;
  NameContext *pNC = pWalker->u.pNC;
  Parse *pParse = pNC->pParse;
  SrcList *pSrcList = pNC->pSrcList;
  AggInfo *pAggInfo = pNC->pAggInfo;

  switch( pExpr->op ){
    case TK_AGG_COLUMN:
    case TK_COLUMN: {
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
            pExpr->pAggInfo = pAggInfo;
            pExpr->op = TK_AGG_COLUMN;
            pExpr->iAgg = k;
            break;
          } /* endif pExpr->iTable==pItem->iCursor */
        } /* end loop over pSrcList */
      }
      return 1;
    }
    case TK_AGG_FUNCTION: {
      /* The pNC->nDepth==0 test causes aggregate functions in subqueries
      ** to be ignored */
      if( pNC->nDepth==0 ){
        /* Check to see if pExpr is a duplicate of another aggregate 
        ** function that is already in the pAggInfo structure







|







2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
            pExpr->pAggInfo = pAggInfo;
            pExpr->op = TK_AGG_COLUMN;
            pExpr->iAgg = k;
            break;
          } /* endif pExpr->iTable==pItem->iCursor */
        } /* end loop over pSrcList */
      }
      return WRC_Prune;
    }
    case TK_AGG_FUNCTION: {
      /* The pNC->nDepth==0 test causes aggregate functions in subqueries
      ** to be ignored */
      if( pNC->nDepth==0 ){
        /* Check to see if pExpr is a duplicate of another aggregate 
        ** function that is already in the pAggInfo structure
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500

3501
3502
3503
3504
3505
3506
3507
3508
3509

3510
3511

3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522

3523



3524
3525
3526
3527
3528
3529
3530
            }
          }
        }
        /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
        */
        pExpr->iAgg = i;
        pExpr->pAggInfo = pAggInfo;
        return 1;
      }
    }
  }


  /* Recursively walk subqueries looking for TK_COLUMN nodes that need
  ** to be changed to TK_AGG_COLUMN.  But increment nDepth so that
  ** TK_AGG_FUNCTION nodes in subqueries will be unchanged.
  */
  if( pExpr->pSelect ){
    pNC->nDepth++;
    walkSelectExpr(pExpr->pSelect, analyzeAggregate, pNC);
    pNC->nDepth--;

  }
  return 0;

}

/*
** Analyze the given expression looking for aggregate functions and
** for variables that need to be added to the pParse->aAgg[] array.
** Make additional entries to the pParse->aAgg[] array as necessary.
**
** This routine should only be called after the expression has been
** analyzed by sqlite3ExprResolveNames().
*/
void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){

  walkExprTree(pExpr, analyzeAggregate, pNC);



}

/*
** Call sqlite3ExprAnalyzeAggregates() for every expression in an
** expression list.  Return the number of errors.
**
** If an error is found, the analysis is cut short.







|



>
|
<
|
|
<
|

|

>
|
|
>








|


>
|
>
>
>







2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926

2927
2928

2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
            }
          }
        }
        /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
        */
        pExpr->iAgg = i;
        pExpr->pAggInfo = pAggInfo;
        return WRC_Prune;
      }
    }
  }
  return WRC_Continue;
}

static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
  NameContext *pNC = pWalker->u.pNC;

  if( pNC->nDepth==0 ){
    pNC->nDepth++;
    sqlite3WalkSelect(pWalker, pSelect);
    pNC->nDepth--;
    return WRC_Prune;
  }else{
    return WRC_Continue;
  }
}

/*
** Analyze the given expression looking for aggregate functions and
** for variables that need to be added to the pParse->aAgg[] array.
** Make additional entries to the pParse->aAgg[] array as necessary.
**
** This routine should only be called after the expression has been
** analyzed by sqlite3ResolveExprNames().
*/
void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
  Walker w;
  w.xExprCallback = analyzeAggregate;
  w.xSelectCallback = analyzeAggregatesInSelect;
  w.u.pNC = pNC;
  sqlite3WalkExpr(&w, pExpr);
}

/*
** Call sqlite3ExprAnalyzeAggregates() for every expression in an
** expression list.  Return the number of errors.
**
** If an error is found, the analysis is cut short.
Changes to src/insert.c.
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that are called by the parser
** to handle INSERT statements in SQLite.
**
** $Id: insert.c,v 1.248 2008/07/28 19:34:53 drh Exp $
*/
#include "sqliteInt.h"

/*
** Set P4 of the most recently inserted opcode to a column affinity
** string for index pIdx. A column affinity string has one character
** for each column in the table, according to the affinity of the column:







|







8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that are called by the parser
** to handle INSERT statements in SQLite.
**
** $Id: insert.c,v 1.249 2008/08/20 16:35:10 drh Exp $
*/
#include "sqliteInt.h"

/*
** Set P4 of the most recently inserted opcode to a column affinity
** string for index pIdx. A column affinity string has one character
** for each column in the table, according to the affinity of the column:
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
*/
static int autoIncBegin(
  Parse *pParse,      /* Parsing context */
  int iDb,            /* Index of the database holding pTab */
  Table *pTab         /* The table we are writing to */
){
  int memId = 0;      /* Register holding maximum rowid */
  if( pTab->autoInc ){
    Vdbe *v = pParse->pVdbe;
    Db *pDb = &pParse->db->aDb[iDb];
    int iCur = pParse->nTab;
    int addr;               /* Address of the top of the loop */
    assert( v );
    pParse->nMem++;         /* Holds name of table */
    memId = ++pParse->nMem;







|







161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
*/
static int autoIncBegin(
  Parse *pParse,      /* Parsing context */
  int iDb,            /* Index of the database holding pTab */
  Table *pTab         /* The table we are writing to */
){
  int memId = 0;      /* Register holding maximum rowid */
  if( pTab->tabFlags & TF_Autoincrement ){
    Vdbe *v = pParse->pVdbe;
    Db *pDb = &pParse->db->aDb[iDb];
    int iCur = pParse->nTab;
    int addr;               /* Address of the top of the loop */
    assert( v );
    pParse->nMem++;         /* Holds name of table */
    memId = ++pParse->nMem;
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
*/
static void autoIncEnd(
  Parse *pParse,     /* The parsing context */
  int iDb,           /* Index of the database holding pTab */
  Table *pTab,       /* Table we are inserting into */
  int memId          /* Memory cell holding the maximum rowid */
){
  if( pTab->autoInc ){
    int iCur = pParse->nTab;
    Vdbe *v = pParse->pVdbe;
    Db *pDb = &pParse->db->aDb[iDb];
    int j1;
    int iRec = ++pParse->nMem;    /* Memory cell used for record */

    assert( v );







|







212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
*/
static void autoIncEnd(
  Parse *pParse,     /* The parsing context */
  int iDb,           /* Index of the database holding pTab */
  Table *pTab,       /* Table we are inserting into */
  int memId          /* Memory cell holding the maximum rowid */
){
  if( pTab->tabFlags & TF_Autoincrement ){
    int iCur = pParse->nTab;
    Vdbe *v = pParse->pVdbe;
    Db *pDb = &pParse->db->aDb[iDb];
    int j1;
    int iRec = ++pParse->nMem;    /* Memory cell used for record */

    assert( v );
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
    sqlite3SelectDestInit(&dest, SRT_Coroutine, ++pParse->nMem);
    addrSelect = sqlite3VdbeCurrentAddr(v)+2;
    sqlite3VdbeAddOp2(v, OP_Integer, addrSelect-1, dest.iParm);
    j1 = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
    VdbeComment((v, "Jump over SELECT coroutine"));

    /* Resolve the expressions in the SELECT statement and execute it. */
    rc = sqlite3Select(pParse, pSelect, &dest, 0, 0, 0);
    if( rc || pParse->nErr || db->mallocFailed ){
      goto insert_cleanup;
    }
    sqlite3VdbeAddOp2(v, OP_Integer, 1, regEof);         /* EOF <- 1 */
    sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm);   /* yield X */
    sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_INTERNAL, OE_Abort);
    VdbeComment((v, "End of SELECT coroutine"));







|







528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
    sqlite3SelectDestInit(&dest, SRT_Coroutine, ++pParse->nMem);
    addrSelect = sqlite3VdbeCurrentAddr(v)+2;
    sqlite3VdbeAddOp2(v, OP_Integer, addrSelect-1, dest.iParm);
    j1 = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
    VdbeComment((v, "Jump over SELECT coroutine"));

    /* Resolve the expressions in the SELECT statement and execute it. */
    rc = sqlite3Select(pParse, pSelect, &dest);
    if( rc || pParse->nErr || db->mallocFailed ){
      goto insert_cleanup;
    }
    sqlite3VdbeAddOp2(v, OP_Integer, 1, regEof);         /* EOF <- 1 */
    sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm);   /* yield X */
    sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_INTERNAL, OE_Abort);
    VdbeComment((v, "End of SELECT coroutine"));
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
    NameContext sNC;
    memset(&sNC, 0, sizeof(sNC));
    sNC.pParse = pParse;
    srcTab = -1;
    assert( useTempTable==0 );
    nColumn = pList ? pList->nExpr : 0;
    for(i=0; i<nColumn; i++){
      if( sqlite3ExprResolveNames(&sNC, pList->a[i].pExpr) ){
        goto insert_cleanup;
      }
    }
  }

  /* Make sure the number of columns in the source data matches the number
  ** of columns to be inserted into the table.







|







598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
    NameContext sNC;
    memset(&sNC, 0, sizeof(sNC));
    sNC.pParse = pParse;
    srcTab = -1;
    assert( useTempTable==0 );
    nColumn = pList ? pList->nExpr : 0;
    for(i=0; i<nColumn; i++){
      if( sqlite3ResolveExprNames(&sNC, pList->a[i].pExpr) ){
        goto insert_cleanup;
      }
    }
  }

  /* Make sure the number of columns in the source data matches the number
  ** of columns to be inserted into the table.
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
  if( pSelect==0 ){
    return 0;   /* Must be of the form  INSERT INTO ... SELECT ... */
  }
  if( pDest->pTrigger ){
    return 0;   /* tab1 must not have triggers */
  }
#ifndef SQLITE_OMIT_VIRTUALTABLE
  if( pDest->isVirtual ){
    return 0;   /* tab1 must not be a virtual table */
  }
#endif
  if( onError==OE_Default ){
    onError = OE_Abort;
  }
  if( onError!=OE_Abort && onError!=OE_Rollback ){







|







1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
  if( pSelect==0 ){
    return 0;   /* Must be of the form  INSERT INTO ... SELECT ... */
  }
  if( pDest->pTrigger ){
    return 0;   /* tab1 must not have triggers */
  }
#ifndef SQLITE_OMIT_VIRTUALTABLE
  if( pDest->tabFlags & TF_Virtual ){
    return 0;   /* tab1 must not be a virtual table */
  }
#endif
  if( onError==OE_Default ){
    onError = OE_Abort;
  }
  if( onError!=OE_Abort && onError!=OE_Rollback ){
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
  if( pSelect->pLimit ){
    return 0;   /* SELECT may not have a LIMIT clause */
  }
  assert( pSelect->pOffset==0 );  /* Must be so if pLimit==0 */
  if( pSelect->pPrior ){
    return 0;   /* SELECT may not be a compound query */
  }
  if( pSelect->isDistinct ){
    return 0;   /* SELECT may not be DISTINCT */
  }
  pEList = pSelect->pEList;
  assert( pEList!=0 );
  if( pEList->nExpr!=1 ){
    return 0;   /* The result set must have exactly one column */
  }







|







1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
  if( pSelect->pLimit ){
    return 0;   /* SELECT may not have a LIMIT clause */
  }
  assert( pSelect->pOffset==0 );  /* Must be so if pLimit==0 */
  if( pSelect->pPrior ){
    return 0;   /* SELECT may not be a compound query */
  }
  if( pSelect->selFlags & SF_Distinct ){
    return 0;   /* SELECT may not be DISTINCT */
  }
  pEList = pSelect->pEList;
  assert( pEList!=0 );
  if( pEList->nExpr!=1 ){
    return 0;   /* The result set must have exactly one column */
  }
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
  if( pSrc==0 ){
    return 0;   /* FROM clause does not contain a real table */
  }
  if( pSrc==pDest ){
    return 0;   /* tab1 and tab2 may not be the same table */
  }
#ifndef SQLITE_OMIT_VIRTUALTABLE
  if( pSrc->isVirtual ){
    return 0;   /* tab2 must not be a virtual table */
  }
#endif
  if( pSrc->pSelect ){
    return 0;   /* tab2 may not be a view */
  }
  if( pDest->nCol!=pSrc->nCol ){







|







1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
  if( pSrc==0 ){
    return 0;   /* FROM clause does not contain a real table */
  }
  if( pSrc==pDest ){
    return 0;   /* tab1 and tab2 may not be the same table */
  }
#ifndef SQLITE_OMIT_VIRTUALTABLE
  if( pSrc->tabFlags & TF_Virtual ){
    return 0;   /* tab2 must not be a virtual table */
  }
#endif
  if( pSrc->pSelect ){
    return 0;   /* tab2 may not be a view */
  }
  if( pDest->nCol!=pSrc->nCol ){
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
                      "PRIMARY KEY must be unique", P4_STATIC);
    sqlite3VdbeJumpHere(v, addr2);
    autoIncStep(pParse, regAutoinc, regRowid);
  }else if( pDest->pIndex==0 ){
    addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
  }else{
    addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
    assert( pDest->autoInc==0 );
  }
  sqlite3VdbeAddOp2(v, OP_RowData, iSrc, regData);
  sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid);
  sqlite3VdbeChangeP5(v, OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND);
  sqlite3VdbeChangeP4(v, -1, pDest->zName, 0);
  sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1);
  autoIncEnd(pParse, iDbDest, pDest, regAutoinc);







|







1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
                      "PRIMARY KEY must be unique", P4_STATIC);
    sqlite3VdbeJumpHere(v, addr2);
    autoIncStep(pParse, regAutoinc, regRowid);
  }else if( pDest->pIndex==0 ){
    addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
  }else{
    addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
    assert( (pDest->tabFlags & TF_Autoincrement)==0 );
  }
  sqlite3VdbeAddOp2(v, OP_RowData, iSrc, regData);
  sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid);
  sqlite3VdbeChangeP5(v, OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND);
  sqlite3VdbeChangeP4(v, -1, pDest->zName, 0);
  sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1);
  autoIncEnd(pParse, iDbDest, pDest, regAutoinc);
Changes to src/main.c.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
**
*************************************************************************
** Main file for the SQLite library.  The routines in this file
** implement the programmer interface to the library.  Routines in
** other files are for internal use by SQLite and should not be
** accessed by users of the library.
**
** $Id: main.c,v 1.490 2008/08/20 16:21:12 danielk1977 Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>

#ifdef SQLITE_ENABLE_FTS3
# include "fts3.h"
#endif







|







10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
**
*************************************************************************
** Main file for the SQLite library.  The routines in this file
** implement the programmer interface to the library.  Routines in
** other files are for internal use by SQLite and should not be
** accessed by users of the library.
**
** $Id: main.c,v 1.491 2008/08/20 16:35:10 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>

#ifdef SQLITE_ENABLE_FTS3
# include "fts3.h"
#endif
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
  **        explicitly declared column. Copy meta information from *pCol.
  */ 
  if( pCol ){
    zDataType = pCol->zType;
    zCollSeq = pCol->zColl;
    notnull = pCol->notNull!=0;
    primarykey  = pCol->isPrimKey!=0;
    autoinc = pTab->iPKey==iCol && pTab->autoInc;
  }else{
    zDataType = "INTEGER";
    primarykey = 1;
  }
  if( !zCollSeq ){
    zCollSeq = "BINARY";
  }







|







1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
  **        explicitly declared column. Copy meta information from *pCol.
  */ 
  if( pCol ){
    zDataType = pCol->zType;
    zCollSeq = pCol->zColl;
    notnull = pCol->notNull!=0;
    primarykey  = pCol->isPrimKey!=0;
    autoinc = pTab->iPKey==iCol && (pTab->tabFlags & TF_Autoincrement)!=0;
  }else{
    zDataType = "INTEGER";
    primarykey = 1;
  }
  if( !zCollSeq ){
    zCollSeq = "BINARY";
  }
Changes to src/parse.y.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
**
*************************************************************************
** This file contains SQLite's grammar for SQL.  Process this file
** using the lemon parser generator to generate C code that runs
** the parser.  Lemon will also generate a header file containing
** numeric codes for all of the tokens.
**
** @(#) $Id: parse.y,v 1.251 2008/08/11 14:26:35 drh Exp $
*/

// All token codes are small integers with #defines that begin with "TK_"
%token_prefix TK_

// The type of the data attached to each token is Token.  This is also the
// default type for non-terminals.







|







10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
**
*************************************************************************
** This file contains SQLite's grammar for SQL.  Process this file
** using the lemon parser generator to generate C code that runs
** the parser.  Lemon will also generate a header file containing
** numeric codes for all of the tokens.
**
** @(#) $Id: parse.y,v 1.252 2008/08/20 16:35:10 drh Exp $
*/

// All token codes are small integers with #defines that begin with "TK_"
%token_prefix TK_

// The type of the data attached to each token is Token.  This is also the
// default type for non-terminals.
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
  sqlite3DropTable(pParse, X, 1, E);
}
%endif  SQLITE_OMIT_VIEW

//////////////////////// The SELECT statement /////////////////////////////////
//
cmd ::= select(X).  {
  SelectDest dest = {SRT_Callback, 0, 0, 0, 0};
  sqlite3Select(pParse, X, &dest, 0, 0, 0);
  sqlite3SelectDelete(pParse->db, X);
}

%type select {Select*}
%destructor select {sqlite3SelectDelete(pParse->db, $$);}
%type oneselect {Select*}
%destructor oneselect {sqlite3SelectDelete(pParse->db, $$);}







|
|







356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
  sqlite3DropTable(pParse, X, 1, E);
}
%endif  SQLITE_OMIT_VIEW

//////////////////////// The SELECT statement /////////////////////////////////
//
cmd ::= select(X).  {
  SelectDest dest = {SRT_Output, 0, 0, 0, 0};
  sqlite3Select(pParse, X, &dest);
  sqlite3SelectDelete(pParse->db, X);
}

%type select {Select*}
%destructor select {sqlite3SelectDelete(pParse->db, $$);}
%type oneselect {Select*}
%destructor oneselect {sqlite3SelectDelete(pParse->db, $$);}
Changes to src/prepare.c.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains the implementation of the sqlite3_prepare()
** interface, and routines that contribute to loading the database schema
** from disk.
**
** $Id: prepare.c,v 1.92 2008/08/11 18:44:58 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>

/*
** Fill the InitData structure with an error message that indicates
** that the database is corrupt.







|







9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains the implementation of the sqlite3_prepare()
** interface, and routines that contribute to loading the database schema
** from disk.
**
** $Id: prepare.c,v 1.93 2008/08/20 16:35:10 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>

/*
** Fill the InitData structure with an error message that indicates
** that the database is corrupt.
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
  (void)sqlite3SafetyOn(db);
  if( initData.rc ){
    rc = initData.rc;
    goto error_out;
  }
  pTab = sqlite3FindTable(db, zMasterName, db->aDb[iDb].zName);
  if( pTab ){
    pTab->readOnly = 1;
  }

  /* Create a cursor to hold the database open
  */
  pDb = &db->aDb[iDb];
  if( pDb->pBt==0 ){
    if( !OMIT_TEMPDB && iDb==1 ){







|







199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
  (void)sqlite3SafetyOn(db);
  if( initData.rc ){
    rc = initData.rc;
    goto error_out;
  }
  pTab = sqlite3FindTable(db, zMasterName, db->aDb[iDb].zName);
  if( pTab ){
    pTab->tabFlags |= TF_Readonly;
  }

  /* Create a cursor to hold the database open
  */
  pDb = &db->aDb[iDb];
  if( pDb->pBt==0 ){
    if( !OMIT_TEMPDB && iDb==1 ){
Added src/resolve.c.










































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
/*
** 2008 August 18
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file contains routines used for walking the parser tree and
** resolve all identifiers by associating them with a particular
** table and column.
**
** $Id: resolve.c,v 1.1 2008/08/20 16:35:10 drh Exp $
*/
#include "sqliteInt.h"
#include <stdlib.h>
#include <string.h>

/*
** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up
** that name in the set of source tables in pSrcList and make the pExpr 
** expression node refer back to that source column.  The following changes
** are made to pExpr:
**
**    pExpr->iDb           Set the index in db->aDb[] of the database X
**                         (even if X is implied).
**    pExpr->iTable        Set to the cursor number for the table obtained
**                         from pSrcList.
**    pExpr->pTab          Points to the Table structure of X.Y (even if
**                         X and/or Y are implied.)
**    pExpr->iColumn       Set to the column number within the table.
**    pExpr->op            Set to TK_COLUMN.
**    pExpr->pLeft         Any expression this points to is deleted
**    pExpr->pRight        Any expression this points to is deleted.
**
** The pDbToken is the name of the database (the "X").  This value may be
** NULL meaning that name is of the form Y.Z or Z.  Any available database
** can be used.  The pTableToken is the name of the table (the "Y").  This
** value can be NULL if pDbToken is also NULL.  If pTableToken is NULL it
** means that the form of the name is Z and that columns from any table
** can be used.
**
** If the name cannot be resolved unambiguously, leave an error message
** in pParse and return non-zero.  Return zero on success.
*/
static int lookupName(
  Parse *pParse,       /* The parsing context */
  Token *pDbToken,     /* Name of the database containing table, or NULL */
  Token *pTableToken,  /* Name of table containing column, or NULL */
  Token *pColumnToken, /* Name of the column. */
  NameContext *pNC,    /* The name context used to resolve the name */
  Expr *pExpr          /* Make this EXPR node point to the selected column */
){
  char *zDb = 0;       /* Name of the database.  The "X" in X.Y.Z */
  char *zTab = 0;      /* Name of the table.  The "Y" in X.Y.Z or Y.Z */
  char *zCol = 0;      /* Name of the column.  The "Z" */
  int i, j;            /* Loop counters */
  int cnt = 0;                      /* Number of matching column names */
  int cntTab = 0;                   /* Number of matching table names */
  sqlite3 *db = pParse->db;         /* The database connection */
  struct SrcList_item *pItem;       /* Use for looping over pSrcList items */
  struct SrcList_item *pMatch = 0;  /* The matching pSrcList item */
  NameContext *pTopNC = pNC;        /* First namecontext in the list */
  Schema *pSchema = 0;              /* Schema of the expression */

  assert( pColumnToken && pColumnToken->z ); /* The Z in X.Y.Z cannot be NULL */

  /* Dequote and zero-terminate the names */
  zDb = sqlite3NameFromToken(db, pDbToken);
  zTab = sqlite3NameFromToken(db, pTableToken);
  zCol = sqlite3NameFromToken(db, pColumnToken);
  if( db->mallocFailed ){
    goto lookupname_end;
  }

  /* Initialize the node to no-match */
  pExpr->iTable = -1;
  pExpr->pTab = 0;

  /* Start at the inner-most context and move outward until a match is found */
  while( pNC && cnt==0 ){
    ExprList *pEList;
    SrcList *pSrcList = pNC->pSrcList;

    if( pSrcList ){
      for(i=0, pItem=pSrcList->a; i<pSrcList->nSrc; i++, pItem++){
        Table *pTab;
        int iDb;
        Column *pCol;
  
        pTab = pItem->pTab;
        assert( pTab!=0 );
        iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
        assert( pTab->nCol>0 );
        if( zTab ){
          if( pItem->zAlias ){
            char *zTabName = pItem->zAlias;
            if( sqlite3StrICmp(zTabName, zTab)!=0 ) continue;
          }else{
            char *zTabName = pTab->zName;
            if( zTabName==0 || sqlite3StrICmp(zTabName, zTab)!=0 ) continue;
            if( zDb!=0 && sqlite3StrICmp(db->aDb[iDb].zName, zDb)!=0 ){
              continue;
            }
          }
        }
        if( 0==(cntTab++) ){
          pExpr->iTable = pItem->iCursor;
          pExpr->pTab = pTab;
          pSchema = pTab->pSchema;
          pMatch = pItem;
        }
        for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){
          if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
            IdList *pUsing;
            cnt++;
            pExpr->iTable = pItem->iCursor;
            pExpr->pTab = pTab;
            pMatch = pItem;
            pSchema = pTab->pSchema;
            /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */
            pExpr->iColumn = j==pTab->iPKey ? -1 : j;
            if( i<pSrcList->nSrc-1 ){
              if( pItem[1].jointype & JT_NATURAL ){
                /* If this match occurred in the left table of a natural join,
                ** then skip the right table to avoid a duplicate match */
                pItem++;
                i++;
              }else if( (pUsing = pItem[1].pUsing)!=0 ){
                /* If this match occurs on a column that is in the USING clause
                ** of a join, skip the search of the right table of the join
                ** to avoid a duplicate match there. */
                int k;
                for(k=0; k<pUsing->nId; k++){
                  if( sqlite3StrICmp(pUsing->a[k].zName, zCol)==0 ){
                    pItem++;
                    i++;
                    break;
                  }
                }
              }
            }
            break;
          }
        }
      }
    }

#ifndef SQLITE_OMIT_TRIGGER
    /* If we have not already resolved the name, then maybe 
    ** it is a new.* or old.* trigger argument reference
    */
    if( zDb==0 && zTab!=0 && cnt==0 && pParse->trigStack!=0 ){
      TriggerStack *pTriggerStack = pParse->trigStack;
      Table *pTab = 0;
      u32 *piColMask;
      if( pTriggerStack->newIdx != -1 && sqlite3StrICmp("new", zTab) == 0 ){
        pExpr->iTable = pTriggerStack->newIdx;
        assert( pTriggerStack->pTab );
        pTab = pTriggerStack->pTab;
        piColMask = &(pTriggerStack->newColMask);
      }else if( pTriggerStack->oldIdx != -1 && sqlite3StrICmp("old", zTab)==0 ){
        pExpr->iTable = pTriggerStack->oldIdx;
        assert( pTriggerStack->pTab );
        pTab = pTriggerStack->pTab;
        piColMask = &(pTriggerStack->oldColMask);
      }

      if( pTab ){ 
        int iCol;
        Column *pCol = pTab->aCol;

        pSchema = pTab->pSchema;
        cntTab++;
        for(iCol=0; iCol < pTab->nCol; iCol++, pCol++) {
          if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
            cnt++;
            pExpr->iColumn = iCol==pTab->iPKey ? -1 : iCol;
            pExpr->pTab = pTab;
            if( iCol>=0 ){
              testcase( iCol==31 );
              testcase( iCol==32 );
              *piColMask |= ((u32)1<<iCol) | (iCol>=32?0xffffffff:0);
            }
            break;
          }
        }
      }
    }
#endif /* !defined(SQLITE_OMIT_TRIGGER) */

    /*
    ** Perhaps the name is a reference to the ROWID
    */
    if( cnt==0 && cntTab==1 && sqlite3IsRowid(zCol) ){
      cnt = 1;
      pExpr->iColumn = -1;
      pExpr->affinity = SQLITE_AFF_INTEGER;
    }

    /*
    ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z
    ** might refer to an result-set alias.  This happens, for example, when
    ** we are resolving names in the WHERE clause of the following command:
    **
    **     SELECT a+b AS x FROM table WHERE x<10;
    **
    ** In cases like this, replace pExpr with a copy of the expression that
    ** forms the result set entry ("a+b" in the example) and return immediately.
    ** Note that the expression in the result set should have already been
    ** resolved by the time the WHERE clause is resolved.
    */
    if( cnt==0 && (pEList = pNC->pEList)!=0 && zTab==0 ){
      for(j=0; j<pEList->nExpr; j++){
        char *zAs = pEList->a[j].zName;
        if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){
          Expr *pDup, *pOrig;
          assert( pExpr->pLeft==0 && pExpr->pRight==0 );
          assert( pExpr->pList==0 );
          assert( pExpr->pSelect==0 );
          pOrig = pEList->a[j].pExpr;
          if( !pNC->allowAgg && ExprHasProperty(pOrig, EP_Agg) ){
            sqlite3ErrorMsg(pParse, "misuse of aliased aggregate %s", zAs);
            sqlite3DbFree(db, zCol);
            return 2;
          }
          pDup = sqlite3ExprDup(db, pOrig);
          if( pExpr->flags & EP_ExpCollate ){
            pDup->pColl = pExpr->pColl;
            pDup->flags |= EP_ExpCollate;
          }
          if( pExpr->span.dyn ) sqlite3DbFree(db, (char*)pExpr->span.z);
          if( pExpr->token.dyn ) sqlite3DbFree(db, (char*)pExpr->token.z);
          memcpy(pExpr, pDup, sizeof(*pExpr));
          sqlite3DbFree(db, pDup);
          cnt = 1;
          pMatch = 0;
          assert( zTab==0 && zDb==0 );
          goto lookupname_end_2;
        }
      } 
    }

    /* Advance to the next name context.  The loop will exit when either
    ** we have a match (cnt>0) or when we run out of name contexts.
    */
    if( cnt==0 ){
      pNC = pNC->pNext;
    }
  }

  /*
  ** If X and Y are NULL (in other words if only the column name Z is
  ** supplied) and the value of Z is enclosed in double-quotes, then
  ** Z is a string literal if it doesn't match any column names.  In that
  ** case, we need to return right away and not make any changes to
  ** pExpr.
  **
  ** Because no reference was made to outer contexts, the pNC->nRef
  ** fields are not changed in any context.
  */
  if( cnt==0 && zTab==0 && pColumnToken->z[0]=='"' ){
    sqlite3DbFree(db, zCol);
    pExpr->op = TK_STRING;
    return 0;
  }

  /*
  ** cnt==0 means there was not match.  cnt>1 means there were two or
  ** more matches.  Either way, we have an error.
  */
  if( cnt!=1 ){
    const char *zErr;
    zErr = cnt==0 ? "no such column" : "ambiguous column name";
    if( zDb ){
      sqlite3ErrorMsg(pParse, "%s: %s.%s.%s", zErr, zDb, zTab, zCol);
    }else if( zTab ){
      sqlite3ErrorMsg(pParse, "%s: %s.%s", zErr, zTab, zCol);
    }else{
      sqlite3ErrorMsg(pParse, "%s: %s", zErr, zCol);
    }
    pTopNC->nErr++;
  }

  /* If a column from a table in pSrcList is referenced, then record
  ** this fact in the pSrcList.a[].colUsed bitmask.  Column 0 causes
  ** bit 0 to be set.  Column 1 sets bit 1.  And so forth.  If the
  ** column number is greater than the number of bits in the bitmask
  ** then set the high-order bit of the bitmask.
  */
  if( pExpr->iColumn>=0 && pMatch!=0 ){
    int n = pExpr->iColumn;
    testcase( n==sizeof(Bitmask)*8-1 );
    if( n>=sizeof(Bitmask)*8 ){
      n = sizeof(Bitmask)*8-1;
    }
    assert( pMatch->iCursor==pExpr->iTable );
    pMatch->colUsed |= ((Bitmask)1)<<n;
  }

lookupname_end:
  /* Clean up and return
  */
  sqlite3DbFree(db, zDb);
  sqlite3DbFree(db, zTab);
  sqlite3ExprDelete(db, pExpr->pLeft);
  pExpr->pLeft = 0;
  sqlite3ExprDelete(db, pExpr->pRight);
  pExpr->pRight = 0;
  pExpr->op = TK_COLUMN;
lookupname_end_2:
  sqlite3DbFree(db, zCol);
  if( cnt==1 ){
    assert( pNC!=0 );
    sqlite3AuthRead(pParse, pExpr, pSchema, pNC->pSrcList);
    /* Increment the nRef value on all name contexts from TopNC up to
    ** the point where the name matched. */
    for(;;){
      assert( pTopNC!=0 );
      pTopNC->nRef++;
      if( pTopNC==pNC ) break;
      pTopNC = pTopNC->pNext;
    }
    return 0;
  } else {
    return 1;
  }
}

/*
** This routine is callback for sqlite3WalkExpr().
**
** Resolve symbolic names into TK_COLUMN operators for the current
** node in the expression tree.  Return 0 to continue the search down
** the tree or 2 to abort the tree walk.
**
** This routine also does error checking and name resolution for
** function names.  The operator for aggregate functions is changed
** to TK_AGG_FUNCTION.
*/
static int resolveExprStep(Walker *pWalker, Expr *pExpr){
  NameContext *pNC;
  Parse *pParse;

  if( pExpr==0 ) return WRC_Continue;
  pNC = pWalker->u.pNC;
  assert( pNC!=0 );
  pParse = pNC->pParse;
  assert( pParse==pWalker->pParse );

  if( ExprHasAnyProperty(pExpr, EP_Resolved) ) return WRC_Prune;
  ExprSetProperty(pExpr, EP_Resolved);
#ifndef NDEBUG
  if( pNC->pSrcList && pNC->pSrcList->nAlloc>0 ){
    SrcList *pSrcList = pNC->pSrcList;
    int i;
    for(i=0; i<pNC->pSrcList->nSrc; i++){
      assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursor<pParse->nTab);
    }
  }
#endif
  switch( pExpr->op ){
    /* A lone identifier is the name of a column.
    */
    case TK_ID: {
      lookupName(pParse, 0, 0, &pExpr->token, pNC, pExpr);
      return WRC_Prune;
    }
  
    /* A table name and column name:     ID.ID
    ** Or a database, table and column:  ID.ID.ID
    */
    case TK_DOT: {
      Token *pColumn;
      Token *pTable;
      Token *pDb;
      Expr *pRight;

      /* if( pSrcList==0 ) break; */
      pRight = pExpr->pRight;
      if( pRight->op==TK_ID ){
        pDb = 0;
        pTable = &pExpr->pLeft->token;
        pColumn = &pRight->token;
      }else{
        assert( pRight->op==TK_DOT );
        pDb = &pExpr->pLeft->token;
        pTable = &pRight->pLeft->token;
        pColumn = &pRight->pRight->token;
      }
      lookupName(pParse, pDb, pTable, pColumn, pNC, pExpr);
      return WRC_Prune;
    }

    /* Resolve function names
    */
    case TK_CONST_FUNC:
    case TK_FUNCTION: {
      ExprList *pList = pExpr->pList;    /* The argument list */
      int n = pList ? pList->nExpr : 0;  /* Number of arguments */
      int no_such_func = 0;       /* True if no such function exists */
      int wrong_num_args = 0;     /* True if wrong number of arguments */
      int is_agg = 0;             /* True if is an aggregate function */
      int auth;                   /* Authorization to use the function */
      int nId;                    /* Number of characters in function name */
      const char *zId;            /* The function name. */
      FuncDef *pDef;              /* Information about the function */
      int enc = ENC(pParse->db);  /* The database encoding */

      zId = (char*)pExpr->token.z;
      nId = pExpr->token.n;
      pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0);
      if( pDef==0 ){
        pDef = sqlite3FindFunction(pParse->db, zId, nId, -1, enc, 0);
        if( pDef==0 ){
          no_such_func = 1;
        }else{
          wrong_num_args = 1;
        }
      }else{
        is_agg = pDef->xFunc==0;
      }
#ifndef SQLITE_OMIT_AUTHORIZATION
      if( pDef ){
        auth = sqlite3AuthCheck(pParse, SQLITE_FUNCTION, 0, pDef->zName, 0);
        if( auth!=SQLITE_OK ){
          if( auth==SQLITE_DENY ){
            sqlite3ErrorMsg(pParse, "not authorized to use function: %s",
                                    pDef->zName);
            pNC->nErr++;
          }
          pExpr->op = TK_NULL;
          return WRC_Prune;
        }
      }
#endif
      if( is_agg && !pNC->allowAgg ){
        sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId);
        pNC->nErr++;
        is_agg = 0;
      }else if( no_such_func ){
        sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId);
        pNC->nErr++;
      }else if( wrong_num_args ){
        sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()",
             nId, zId);
        pNC->nErr++;
      }
      if( is_agg ){
        pExpr->op = TK_AGG_FUNCTION;
        pNC->hasAgg = 1;
      }
      if( is_agg ) pNC->allowAgg = 0;
      sqlite3WalkExprList(pWalker, pList);
      if( is_agg ) pNC->allowAgg = 1;
      /* FIX ME:  Compute pExpr->affinity based on the expected return
      ** type of the function 
      */
      return WRC_Prune;
    }
#ifndef SQLITE_OMIT_SUBQUERY
    case TK_SELECT:
    case TK_EXISTS:
#endif
    case TK_IN: {
      if( pExpr->pSelect ){
        int nRef = pNC->nRef;
#ifndef SQLITE_OMIT_CHECK
        if( pNC->isCheck ){
          sqlite3ErrorMsg(pParse,"subqueries prohibited in CHECK constraints");
        }
#endif
        sqlite3WalkSelect(pWalker, pExpr->pSelect);
        assert( pNC->nRef>=nRef );
        if( nRef!=pNC->nRef ){
          ExprSetProperty(pExpr, EP_VarSelect);
        }
      }
      break;
    }
#ifndef SQLITE_OMIT_CHECK
    case TK_VARIABLE: {
      if( pNC->isCheck ){
        sqlite3ErrorMsg(pParse,"parameters prohibited in CHECK constraints");
      }
      break;
    }
#endif
  }
  return (pParse->nErr || pParse->db->mallocFailed) ? WRC_Abort : WRC_Continue;
}

/*
** pEList is a list of expressions which are really the result set of the
** a SELECT statement.  pE is a term in an ORDER BY or GROUP BY clause.
** This routine checks to see if pE is a simple identifier which corresponds
** to the AS-name of one of the terms of the expression list.  If it is,
** this routine return an integer between 1 and N where N is the number of
** elements in pEList, corresponding to the matching entry.  If there is
** no match, or if pE is not a simple identifier, then this routine
** return 0.
**
** pEList has been resolved.  pE has not.
*/
static int resolveAsName(
  Parse *pParse,     /* Parsing context for error messages */
  ExprList *pEList,  /* List of expressions to scan */
  Expr *pE           /* Expression we are trying to match */
){
  int i;             /* Loop counter */

  if( pE->op==TK_ID || (pE->op==TK_STRING && pE->token.z[0]!='\'') ){
    sqlite3 *db = pParse->db;
    char *zCol = sqlite3NameFromToken(db, &pE->token);
    if( zCol==0 ){
      return -1;
    }
    for(i=0; i<pEList->nExpr; i++){
      char *zAs = pEList->a[i].zName;
      if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){
        sqlite3DbFree(db, zCol);
        return i+1;
      }
    }
    sqlite3DbFree(db, zCol);
  }
  return 0;
}

/*
** pE is a pointer to an expression which is a single term in the
** ORDER BY of a compound SELECT.  The expression has not been
** name resolved.
**
** At the point this routine is called, we already know that the
** ORDER BY term is not an integer index into the result set.  That
** case is handled by the calling routine.
**
** Attempt to match pE against result set columns in the left-most
** SELECT statement.  Return the index i of the matching column,
** as an indication to the caller that it should sort by the i-th column.
** The left-most column is 1.  In other words, the value returned is the
** same integer value that would be used in the SQL statement to indicate
** the column.
**
** If there is no match, return 0.  Return -1 if an error occurs.
*/
static int resolveOrderByTermToExprList(
  Parse *pParse,     /* Parsing context for error messages */
  Select *pSelect,   /* The SELECT statement with the ORDER BY clause */
  Expr *pE           /* The specific ORDER BY term */
){
  int i;             /* Loop counter */
  ExprList *pEList;  /* The columns of the result set */
  NameContext nc;    /* Name context for resolving pE */

  assert( sqlite3ExprIsInteger(pE, &i)==0 );
  pEList = pSelect->pEList;

  /* Resolve all names in the ORDER BY term expression
  */
  memset(&nc, 0, sizeof(nc));
  nc.pParse = pParse;
  nc.pSrcList = pSelect->pSrc;
  nc.pEList = pEList;
  nc.allowAgg = 1;
  nc.nErr = 0;
  if( sqlite3ResolveExprNames(&nc, pE) ){
    sqlite3ErrorClear(pParse);
    return 0;
  }

  /* Try to match the ORDER BY expression against an expression
  ** in the result set.  Return an 1-based index of the matching
  ** result-set entry.
  */
  for(i=0; i<pEList->nExpr; i++){
    if( sqlite3ExprCompare(pEList->a[i].pExpr, pE) ){
      return i+1;
    }
  }

  /* If no match, return 0. */
  return 0;
}

/*
** Generate an ORDER BY or GROUP BY term out-of-range error.
*/
static void resolveOutOfRangeError(
  Parse *pParse,         /* The error context into which to write the error */
  const char *zType,     /* "ORDER" or "GROUP" */
  int i,                 /* The index (1-based) of the term out of range */
  int mx                 /* Largest permissible value of i */
){
  sqlite3ErrorMsg(pParse, 
    "%r %s BY term out of range - should be "
    "between 1 and %d", i, zType, mx);
}

/*
** Analyze the ORDER BY clause in a compound SELECT statement.   Modify
** each term of the ORDER BY clause is a constant integer between 1
** and N where N is the number of columns in the compound SELECT.
**
** ORDER BY terms that are already an integer between 1 and N are
** unmodified.  ORDER BY terms that are integers outside the range of
** 1 through N generate an error.  ORDER BY terms that are expressions
** are matched against result set expressions of compound SELECT
** beginning with the left-most SELECT and working toward the right.
** At the first match, the ORDER BY expression is transformed into
** the integer column number.
**
** Return the number of errors seen.
*/
static int resolveCompoundOrderBy(
  Parse *pParse,        /* Parsing context.  Leave error messages here */
  Select *pSelect       /* The SELECT statement containing the ORDER BY */
){
  int i;
  ExprList *pOrderBy;
  ExprList *pEList;
  sqlite3 *db;
  int moreToDo = 1;

  pOrderBy = pSelect->pOrderBy;
  if( pOrderBy==0 ) return 0;
  db = pParse->db;
#if SQLITE_MAX_COLUMN
  if( pOrderBy->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
    sqlite3ErrorMsg(pParse, "too many terms in ORDER BY clause");
    return 1;
  }
#endif
  for(i=0; i<pOrderBy->nExpr; i++){
    pOrderBy->a[i].done = 0;
  }
  pSelect->pNext = 0;
  while( pSelect->pPrior ){
    pSelect->pPrior->pNext = pSelect;
    pSelect = pSelect->pPrior;
  }
  while( pSelect && moreToDo ){
    struct ExprList_item *pItem;
    moreToDo = 0;
    pEList = pSelect->pEList;
    if( pEList==0 ){
      return 1;
    }
    for(i=0, pItem=pOrderBy->a; i<pOrderBy->nExpr; i++, pItem++){
      int iCol = -1;
      Expr *pE, *pDup;
      if( pItem->done ) continue;
      pE = pItem->pExpr;
      if( sqlite3ExprIsInteger(pE, &iCol) ){
        if( iCol<0 || iCol>pEList->nExpr ){
          resolveOutOfRangeError(pParse, "ORDER", i+1, pEList->nExpr);
          return 1;
        }
      }else{
        iCol = resolveAsName(pParse, pEList, pE);
        if( iCol==0 ){
          pDup = sqlite3ExprDup(db, pE);
          if( !db->mallocFailed ){
            assert(pDup);
            iCol = resolveOrderByTermToExprList(pParse, pSelect, pDup);
          }
          sqlite3ExprDelete(db, pDup);
        }
        if( iCol<0 ){
          return 1;
        }
      }
      if( iCol>0 ){
        CollSeq *pColl = pE->pColl;
        int flags = pE->flags & EP_ExpCollate;
        sqlite3ExprDelete(db, pE);
        pItem->pExpr = pE = sqlite3Expr(db, TK_INTEGER, 0, 0, 0);
        if( pE==0 ) return 1;
        pE->pColl = pColl;
        pE->flags |= EP_IntValue | flags;
        pE->iTable = iCol;
        pItem->iCol = iCol;
        pItem->done = 1;
      }else{
        moreToDo = 1;
      }
    }
    pSelect = pSelect->pNext;
  }
  for(i=0; i<pOrderBy->nExpr; i++){
    if( pOrderBy->a[i].done==0 ){
      sqlite3ErrorMsg(pParse, "%r ORDER BY term does not match any "
            "column in the result set", i+1);
      return 1;
    }
  }
  return 0;
}

/*
** Check every term in the ORDER BY or GROUP BY clause pOrderBy of
** the SELECT statement pSelect.  If any term is reference to a
** result set expression (as determined by the ExprList.a.iCol field)
** then convert that term into a copy of the corresponding result set
** column.
**
** If any errors are detected, add an error message to pParse and
** return non-zero.  Return zero if no errors are seen.
*/
int sqlite3ResolveOrderGroupBy(
  Parse *pParse,        /* Parsing context.  Leave error messages here */
  Select *pSelect,      /* The SELECT statement containing the clause */
  ExprList *pOrderBy,   /* The ORDER BY or GROUP BY clause to be processed */
  const char *zType     /* "ORDER" or "GROUP" */
){
  int i;
  sqlite3 *db = pParse->db;
  ExprList *pEList;
  struct ExprList_item *pItem;

  if( pOrderBy==0 || pParse->db->mallocFailed ) return 0;
#if SQLITE_MAX_COLUMN
  if( pOrderBy->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
    sqlite3ErrorMsg(pParse, "too many terms in %s BY clause", zType);
    return 1;
  }
#endif
  pEList = pSelect->pEList;
  if( pEList==0 ){
    return 0;
  }
  for(i=0, pItem=pOrderBy->a; i<pOrderBy->nExpr; i++, pItem++){
    if( pItem->iCol ){
      Expr *pE;
      CollSeq *pColl;
      int flags;

      if( pItem->iCol>pEList->nExpr ){
        resolveOutOfRangeError(pParse, zType, i+1, pEList->nExpr);
        return 1;
      }
      pE = pItem->pExpr;
      pColl = pE->pColl;
      flags = pE->flags & EP_ExpCollate;
      sqlite3ExprDelete(db, pE);
      pE = sqlite3ExprDup(db, pEList->a[pItem->iCol-1].pExpr);
      pItem->pExpr = pE;
      if( pE && pColl && flags ){
        pE->pColl = pColl;
        pE->flags |= flags;
      }
    }
  }
  return 0;
}

/*
** pOrderBy is an ORDER BY or GROUP BY clause in SELECT statement pSelect.
** The Name context of the SELECT statement is pNC.  zType is either
** "ORDER" or "GROUP" depending on which type of clause pOrderBy is.
**
** This routine resolves each term of the clause into an expression.
** If the order-by term is an integer I between 1 and N (where N is the
** number of columns in the result set of the SELECT) then the expression
** in the resolution is a copy of the I-th result-set expression.  If
** the order-by term is an identify that corresponds to the AS-name of
** a result-set expression, then the term resolves to a copy of the
** result-set expression.  Otherwise, the expression is resolved in
** the usual way - using sqlite3ResolveExprNames().
**
** This routine returns the number of errors.  If errors occur, then
** an appropriate error message might be left in pParse.  (OOM errors
** excepted.)
*/
static int resolveOrderGroupBy(
  NameContext *pNC,     /* The name context of the SELECT statement */
  Select *pSelect,      /* The SELECT statement holding pOrderBy */
  ExprList *pOrderBy,   /* An ORDER BY or GROUP BY clause to resolve */
  const char *zType     /* Either "ORDER" or "GROUP", as appropriate */
){
  int i;                         /* Loop counter */
  int iCol;                      /* Column number */
  struct ExprList_item *pItem;   /* A term of the ORDER BY clause */
  Parse *pParse;                 /* Parsing context */
  int nResult;                   /* Number of terms in the result set */

  if( pOrderBy==0 ) return 0;
  nResult = pSelect->pEList->nExpr;
  pParse = pNC->pParse;
  for(i=0, pItem=pOrderBy->a; i<pOrderBy->nExpr; i++, pItem++){
    Expr *pE = pItem->pExpr;
    iCol = resolveAsName(pParse, pSelect->pEList, pE);
    if( iCol<0 ){
      return 1;  /* OOM error */
    }
    if( iCol>0 ){
      /* If an AS-name match is found, mark this ORDER BY column as being
      ** a copy of the iCol-th result-set column.  The subsequent call to
      ** sqlite3ResolveOrderGroupBy() will convert the expression to a
      ** copy of the iCol-th result-set expression. */
      pItem->iCol = iCol;
      continue;
    }
    if( sqlite3ExprIsInteger(pE, &iCol) ){
      /* The ORDER BY term is an integer constant.  Again, set the column
      ** number so that sqlite3ResolveOrderGroupBy() will convert the
      ** order-by term to a copy of the result-set expression */
      if( iCol<1 || iCol>nResult ){
        resolveOutOfRangeError(pParse, zType, i+1, nResult);
        return 1;
      }
      pItem->iCol = iCol;
      continue;
    }

    /* Otherwise, treat the ORDER BY term as an ordinary expression */
    pItem->iCol = 0;
    if( sqlite3ResolveExprNames(pNC, pE) ){
      return 1;
    }
  }
  return sqlite3ResolveOrderGroupBy(pParse, pSelect, pOrderBy, zType);
}

/*
** Resolve names in the SELECT statement p and all of its descendents.
*/
static int resolveSelectStep(Walker *pWalker, Select *p){
  NameContext *pOuterNC;  /* Context that contains this SELECT */
  NameContext sNC;        /* Name context of this SELECT */
  int isCompound;         /* True if p is a compound select */
  int nCompound;          /* Number of compound terms processed so far */
  Parse *pParse;          /* Parsing context */
  ExprList *pEList;       /* Result set expression list */
  int i;                  /* Loop counter */
  ExprList *pGroupBy;     /* The GROUP BY clause */
  Select *pLeftmost;      /* Left-most of SELECT of a compound */
  sqlite3 *db;            /* Database connection */
  

  if( p==0 ) return WRC_Continue;
  if( p->selFlags & SF_Resolved ){
    return WRC_Prune;
  }
  pOuterNC = pWalker->u.pNC;
  pParse = pWalker->pParse;
  db = pParse->db;

  /* Normally sqlite3SelectExpand() will be called first and will have
  ** already expanded this SELECT.  However, if this is a subquery within
  ** an expression, sqlite3ResolveExprNames() will be called without a
  ** prior call to sqlite3SelectExpand().  When that happens, let
  ** sqlite3SelectPrep() do all of the processing for this SELECT.
  ** sqlite3SelectPrep() will invoke both sqlite3SelectExpand() and
  ** this routine in the correct order.
  */
  if( (p->selFlags & SF_Expanded)==0 ){
    sqlite3SelectPrep(pParse, p, pOuterNC);
    return (pParse->nErr || db->mallocFailed) ? WRC_Abort : WRC_Prune;
  }

  isCompound = p->pPrior!=0;
  nCompound = 0;
  pLeftmost = p;
  while( p ){
    assert( (p->selFlags & SF_Expanded)!=0 );
    assert( (p->selFlags & SF_Resolved)==0 );
    p->selFlags |= SF_Resolved;

    /* Resolve the expressions in the LIMIT and OFFSET clauses. These
    ** are not allowed to refer to any names, so pass an empty NameContext.
    */
    memset(&sNC, 0, sizeof(sNC));
    sNC.pParse = pParse;
    if( sqlite3ResolveExprNames(&sNC, p->pLimit) ||
        sqlite3ResolveExprNames(&sNC, p->pOffset) ){
      return WRC_Abort;
    }
  
    /* Set up the local name-context to pass to sqlite3ResolveExprNames() to
    ** resolve the result-set expression list.
    */
    sNC.allowAgg = 1;
    sNC.pSrcList = p->pSrc;
    sNC.pNext = pOuterNC;
  
    /* Resolve names in the result set. */
    pEList = p->pEList;
    if( !pEList ) return WRC_Abort;
    for(i=0; i<pEList->nExpr; i++){
      Expr *pX = pEList->a[i].pExpr;
      if( sqlite3ResolveExprNames(&sNC, pX) ){
        return WRC_Abort;
      }
    }
  
    /* Recursively resolve names in all subqueries
    */
    for(i=0; i<p->pSrc->nSrc; i++){
      struct SrcList_item *pItem = &p->pSrc->a[i];
      if( pItem->pSelect ){
        const char *zSavedContext = pParse->zAuthContext;
        if( pItem->zName ) pParse->zAuthContext = pItem->zName;
        sqlite3ResolveSelectNames(pParse, pItem->pSelect, &sNC);
        pParse->zAuthContext = zSavedContext;
        if( pParse->nErr || db->mallocFailed ) return WRC_Abort;
      }
    }
  
    /* If there are no aggregate functions in the result-set, and no GROUP BY 
    ** expression, do not allow aggregates in any of the other expressions.
    */
    assert( (p->selFlags & SF_Aggregate)==0 );
    pGroupBy = p->pGroupBy;
    if( pGroupBy || sNC.hasAgg ){
      p->selFlags |= SF_Aggregate;
    }else{
      sNC.allowAgg = 0;
    }
  
    /* If a HAVING clause is present, then there must be a GROUP BY clause.
    */
    if( p->pHaving && !pGroupBy ){
      sqlite3ErrorMsg(pParse, "a GROUP BY clause is required before HAVING");
      return WRC_Abort;
    }
  
    /* Add the expression list to the name-context before parsing the
    ** other expressions in the SELECT statement. This is so that
    ** expressions in the WHERE clause (etc.) can refer to expressions by
    ** aliases in the result set.
    **
    ** Minor point: If this is the case, then the expression will be
    ** re-evaluated for each reference to it.
    */
    sNC.pEList = p->pEList;
    if( sqlite3ResolveExprNames(&sNC, p->pWhere) ||
       sqlite3ResolveExprNames(&sNC, p->pHaving)
    ){
      return WRC_Abort;
    }

    /* The ORDER BY and GROUP BY clauses may not refer to terms in
    ** outer queries 
    */
    sNC.pNext = 0;
    sNC.allowAgg = 1;

    /* Process the ORDER BY clause for singleton SELECT statements.
    ** The ORDER BY clause for compounds SELECT statements is handled
    ** below, after all of the result-sets for all of the elements of
    ** the compound have been resolved.
    */
    if( !isCompound && resolveOrderGroupBy(&sNC, p, p->pOrderBy, "ORDER") ){
      return WRC_Abort;
    }
    if( db->mallocFailed ){
      return WRC_Abort;
    }
  
    /* Resolve the GROUP BY clause.  At the same time, make sure 
    ** the GROUP BY clause does not contain aggregate functions.
    */
    if( pGroupBy ){
      struct ExprList_item *pItem;
    
      if( resolveOrderGroupBy(&sNC, p, pGroupBy, "GROUP") || db->mallocFailed ){
        return WRC_Abort;
      }
      for(i=0, pItem=pGroupBy->a; i<pGroupBy->nExpr; i++, pItem++){
        if( ExprHasProperty(pItem->pExpr, EP_Agg) ){
          sqlite3ErrorMsg(pParse, "aggregate functions are not allowed in "
              "the GROUP BY clause");
          return WRC_Abort;
        }
      }
    }

    /* Advance to the next term of the compound
    */
    p = p->pPrior;
    nCompound++;
  }

  /* Resolve the ORDER BY on a compound SELECT after all terms of
  ** the compound have been resolved.
  */
  if( isCompound && resolveCompoundOrderBy(pParse, pLeftmost) ){
    return WRC_Abort;
  }

  return WRC_Prune;
}

/*
** This routine walks an expression tree and resolves references to
** table columns and result-set columns.  At the same time, do error
** checking on function usage and set a flag if any aggregate functions
** are seen.
**
** To resolve table columns references we look for nodes (or subtrees) of the 
** form X.Y.Z or Y.Z or just Z where
**
**      X:   The name of a database.  Ex:  "main" or "temp" or
**           the symbolic name assigned to an ATTACH-ed database.
**
**      Y:   The name of a table in a FROM clause.  Or in a trigger
**           one of the special names "old" or "new".
**
**      Z:   The name of a column in table Y.
**
** The node at the root of the subtree is modified as follows:
**
**    Expr.op        Changed to TK_COLUMN
**    Expr.pTab      Points to the Table object for X.Y
**    Expr.iColumn   The column index in X.Y.  -1 for the rowid.
**    Expr.iTable    The VDBE cursor number for X.Y
**
**
** To resolve result-set references, look for expression nodes of the
** form Z (with no X and Y prefix) where the Z matches the right-hand
** size of an AS clause in the result-set of a SELECT.  The Z expression
** is replaced by a copy of the left-hand side of the result-set expression.
** Table-name and function resolution occurs on the substituted expression
** tree.  For example, in:
**
**      SELECT a+b AS x, c+d AS y FROM t1 ORDER BY x;
**
** The "x" term of the order by is replaced by "a+b" to render:
**
**      SELECT a+b AS x, c+d AS y FROM t1 ORDER BY a+b;
**
** Function calls are checked to make sure that the function is 
** defined and that the correct number of arguments are specified.
** If the function is an aggregate function, then the pNC->hasAgg is
** set and the opcode is changed from TK_FUNCTION to TK_AGG_FUNCTION.
** If an expression contains aggregate functions then the EP_Agg
** property on the expression is set.
**
** An error message is left in pParse if anything is amiss.  The number
** if errors is returned.
*/
int sqlite3ResolveExprNames( 
  NameContext *pNC,       /* Namespace to resolve expressions in. */
  Expr *pExpr             /* The expression to be analyzed. */
){
  int savedHasAgg;
  Walker w;

  if( pExpr==0 ) return 0;
#if SQLITE_MAX_EXPR_DEPTH>0
  {
    Parse *pParse = pNC->pParse;
    if( sqlite3ExprCheckHeight(pParse, pExpr->nHeight+pNC->pParse->nHeight) ){
      return 1;
    }
    pParse->nHeight += pExpr->nHeight;
  }
#endif
  savedHasAgg = pNC->hasAgg;
  pNC->hasAgg = 0;
  w.xExprCallback = resolveExprStep;
  w.xSelectCallback = resolveSelectStep;
  w.pParse = pNC->pParse;
  w.u.pNC = pNC;
  sqlite3WalkExpr(&w, pExpr);
#if SQLITE_MAX_EXPR_DEPTH>0
  pNC->pParse->nHeight -= pExpr->nHeight;
#endif
  if( pNC->nErr>0 ){
    ExprSetProperty(pExpr, EP_Error);
  }
  if( pNC->hasAgg ){
    ExprSetProperty(pExpr, EP_Agg);
  }else if( savedHasAgg ){
    pNC->hasAgg = 1;
  }
  return ExprHasProperty(pExpr, EP_Error);
}
int sqlite3ResolveExprListNames( 
  NameContext *pNC,       /* Namespace to resolve expressions in. */
  ExprList *pList         /* List of expressions to be analyzed. */
){
  int i;
  struct ExprList_item *pItem;
  if( pList==0 ) return 0;
  for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
    if( sqlite3ResolveExprNames(pNC, pItem->pExpr) ) return 1;
  }
  return 0;
}


/*
** Resolve all names in all expressions of a SELECT and in all
** decendents of the SELECT, including compounds off of p->pPrior,
** subqueries in expressions, and subqueries used as FROM clause
** terms.
**
** See sqlite3ResolveExprNames() for a description of the kinds of
** transformations that occur.
**
** All SELECT statements should have been expanded using
** sqlite3SelectExpand() prior to invoking this routine.
*/
void sqlite3ResolveSelectNames(
  Parse *pParse,         /* The parser context */
  Select *p,             /* The SELECT statement being coded. */
  NameContext *pOuterNC  /* Name context for parent SELECT statement */
){
  Walker w;

  if( p ){
    w.xExprCallback = resolveExprStep;
    w.xSelectCallback = resolveSelectStep;
    w.pParse = pParse;
    w.u.pNC = pOuterNC;
    sqlite3WalkSelect(&w, p);
  }
}
Changes to src/select.c.
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that are called by the parser
** to handle SELECT statements in SQLite.
**
** $Id: select.c,v 1.465 2008/08/14 00:19:49 drh Exp $
*/
#include "sqliteInt.h"


/*
** Delete all the content of a Select structure but do not deallocate
** the select structure itself.







|







8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that are called by the parser
** to handle SELECT statements in SQLite.
**
** $Id: select.c,v 1.466 2008/08/20 16:35:10 drh Exp $
*/
#include "sqliteInt.h"


/*
** Delete all the content of a Select structure but do not deallocate
** the select structure itself.
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
  }
  pNew->pEList = pEList;
  pNew->pSrc = pSrc;
  pNew->pWhere = pWhere;
  pNew->pGroupBy = pGroupBy;
  pNew->pHaving = pHaving;
  pNew->pOrderBy = pOrderBy;
  pNew->isDistinct = isDistinct;
  pNew->op = TK_SELECT;
  assert( pOffset==0 || pLimit!=0 );
  pNew->pLimit = pLimit;
  pNew->pOffset = pOffset;
  pNew->addrOpenEphm[0] = -1;
  pNew->addrOpenEphm[1] = -1;
  pNew->addrOpenEphm[2] = -1;







|







75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
  }
  pNew->pEList = pEList;
  pNew->pSrc = pSrc;
  pNew->pWhere = pWhere;
  pNew->pGroupBy = pGroupBy;
  pNew->pHaving = pHaving;
  pNew->pOrderBy = pOrderBy;
  pNew->selFlags = isDistinct ? SF_Distinct : 0;
  pNew->op = TK_SELECT;
  assert( pOffset==0 || pLimit!=0 );
  pNew->pLimit = pLimit;
  pNew->pOffset = pOffset;
  pNew->addrOpenEphm[0] = -1;
  pNew->addrOpenEphm[1] = -1;
  pNew->addrOpenEphm[2] = -1;
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
    for(i=0; i<nColumn; i++){
      sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
    }
  }else if( eDest!=SRT_Exists ){
    /* If the destination is an EXISTS(...) expression, the actual
    ** values returned by the SELECT are not required.
    */
    sqlite3ExprCodeExprList(pParse, pEList, regResult, eDest==SRT_Callback);
  }
  nColumn = nResultCol;

  /* If the DISTINCT keyword was present on the SELECT statement
  ** and this row has been seen before, then do not make this row
  ** part of the result.
  */







|







569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
    for(i=0; i<nColumn; i++){
      sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
    }
  }else if( eDest!=SRT_Exists ){
    /* If the destination is an EXISTS(...) expression, the actual
    ** values returned by the SELECT are not required.
    */
    sqlite3ExprCodeExprList(pParse, pEList, regResult, eDest==SRT_Output);
  }
  nColumn = nResultCol;

  /* If the DISTINCT keyword was present on the SELECT statement
  ** and this row has been seen before, then do not make this row
  ** part of the result.
  */
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
#endif /* #ifndef SQLITE_OMIT_SUBQUERY */

    /* Send the data to the callback function or to a subroutine.  In the
    ** case of a subroutine, the subroutine itself is responsible for
    ** popping the data from the stack.
    */
    case SRT_Coroutine:
    case SRT_Callback: {
      if( pOrderBy ){
        int r1 = sqlite3GetTempReg(pParse);
        sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
        pushOntoSorter(pParse, pOrderBy, p, r1);
        sqlite3ReleaseTempReg(pParse, r1);
      }else if( eDest==SRT_Coroutine ){
        sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);







|







686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
#endif /* #ifndef SQLITE_OMIT_SUBQUERY */

    /* Send the data to the callback function or to a subroutine.  In the
    ** case of a subroutine, the subroutine itself is responsible for
    ** popping the data from the stack.
    */
    case SRT_Coroutine:
    case SRT_Output: {
      if( pOrderBy ){
        int r1 = sqlite3GetTempReg(pParse);
        sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
        pushOntoSorter(pParse, pOrderBy, p, r1);
        sqlite3ReleaseTempReg(pParse, r1);
      }else if( eDest==SRT_Coroutine ){
        sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
  int eDest = pDest->eDest;
  int iParm = pDest->iParm;

  int regRow;
  int regRowid;

  iTab = pOrderBy->iECursor;
  if( eDest==SRT_Callback || eDest==SRT_Coroutine ){
    pseudoTab = pParse->nTab++;
    sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, nColumn);
    sqlite3VdbeAddOp2(v, OP_OpenPseudo, pseudoTab, eDest==SRT_Callback);
  }
  addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, brk);
  codeOffset(v, p, cont);
  regRow = sqlite3GetTempReg(pParse);
  regRowid = sqlite3GetTempReg(pParse);
  sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr + 1, regRow);
  switch( eDest ){







|


|







793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
  int eDest = pDest->eDest;
  int iParm = pDest->iParm;

  int regRow;
  int regRowid;

  iTab = pOrderBy->iECursor;
  if( eDest==SRT_Output || eDest==SRT_Coroutine ){
    pseudoTab = pParse->nTab++;
    sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, nColumn);
    sqlite3VdbeAddOp2(v, OP_OpenPseudo, pseudoTab, eDest==SRT_Output);
  }
  addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, brk);
  codeOffset(v, p, cont);
  regRow = sqlite3GetTempReg(pParse);
  regRowid = sqlite3GetTempReg(pParse);
  sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr + 1, regRow);
  switch( eDest ){
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
    case SRT_Mem: {
      assert( nColumn==1 );
      sqlite3ExprCodeMove(pParse, regRow, iParm, 1);
      /* The LIMIT clause will terminate the loop for us */
      break;
    }
#endif
    case SRT_Callback:
    case SRT_Coroutine: {
      int i;
      sqlite3VdbeAddOp2(v, OP_Integer, 1, regRowid);
      sqlite3VdbeAddOp3(v, OP_Insert, pseudoTab, regRow, regRowid);
      for(i=0; i<nColumn; i++){
        assert( regRow!=pDest->iMem+i );
        sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iMem+i);
      }
      if( eDest==SRT_Callback ){
        sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iMem, nColumn);
        sqlite3ExprCacheAffinityChange(pParse, pDest->iMem, nColumn);
      }else{
        sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
      }
      break;
    }







|








|







826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
    case SRT_Mem: {
      assert( nColumn==1 );
      sqlite3ExprCodeMove(pParse, regRow, iParm, 1);
      /* The LIMIT clause will terminate the loop for us */
      break;
    }
#endif
    case SRT_Output:
    case SRT_Coroutine: {
      int i;
      sqlite3VdbeAddOp2(v, OP_Integer, 1, regRowid);
      sqlite3VdbeAddOp3(v, OP_Insert, pseudoTab, regRow, regRowid);
      for(i=0; i<nColumn; i++){
        assert( regRow!=pDest->iMem+i );
        sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iMem+i);
      }
      if( eDest==SRT_Output ){
        sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iMem, nColumn);
        sqlite3ExprCacheAffinityChange(pParse, pDest->iMem, nColumn);
      }else{
        sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
      }
      break;
    }
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
  assert( p->iLimit==0 );

  /* The bottom of the loop
  */
  sqlite3VdbeResolveLabel(v, cont);
  sqlite3VdbeAddOp2(v, OP_Next, iTab, addr);
  sqlite3VdbeResolveLabel(v, brk);
  if( eDest==SRT_Callback || eDest==SRT_Coroutine ){
    sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0);
  }

}

/*
** Return a pointer to a string containing the 'declaration type' of the







|







860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
  assert( p->iLimit==0 );

  /* The bottom of the loop
  */
  sqlite3VdbeResolveLabel(v, cont);
  sqlite3VdbeAddOp2(v, OP_Next, iTab, addr);
  sqlite3VdbeResolveLabel(v, brk);
  if( eDest==SRT_Output || eDest==SRT_Coroutine ){
    sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0);
  }

}

/*
** Return a pointer to a string containing the 'declaration type' of the
1124
1125
1126
1127
1128
1129
1130
1131


1132
1133
1134
1135
1136


1137


1138

1139
1140
1141
1142

1143

1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182




1183
1184
1185
1186
1187
1188
1189



1190
1191
1192
1193
1194
1195
1196
1197

1198
1199
1200
1201
1202
1203
1204
    default:           z = "UNION";       break;
  }
  return z;
}
#endif /* SQLITE_OMIT_COMPOUND_SELECT */

/*
** Forward declaration


*/
static int prepSelectStmt(Parse*, Select*);

/*
** Given a SELECT statement, generate a Table structure that describes


** the result set of that SELECT.


*/

Table *sqlite3ResultSetOfSelect(Parse *pParse, char *zTabName, Select *pSelect){
  Table *pTab;
  int i, j, rc;
  ExprList *pEList;

  Column *aCol, *pCol;

  sqlite3 *db = pParse->db;
  int savedFlags;

  savedFlags = db->flags;
  db->flags &= ~SQLITE_FullColNames;
  db->flags |= SQLITE_ShortColNames;
  rc = sqlite3SelectResolve(pParse, pSelect, 0);
  if( rc==SQLITE_OK ){
    while( pSelect->pPrior ) pSelect = pSelect->pPrior;
    rc = prepSelectStmt(pParse, pSelect);
    if( rc==SQLITE_OK ){
      rc = sqlite3SelectResolve(pParse, pSelect, 0);
    }
  }
  db->flags = savedFlags;
  if( rc ){
    return 0;
  }
  pTab = sqlite3DbMallocZero(db, sizeof(Table) );
  if( pTab==0 ){
    return 0;
  }
  pTab->db = db;
  pTab->nRef = 1;
  pTab->zName = zTabName ? sqlite3DbStrDup(db, zTabName) : 0;
  pEList = pSelect->pEList;
  pTab->nCol = pEList->nExpr;
  assert( pTab->nCol>0 );
  pTab->aCol = aCol = sqlite3DbMallocZero(db, sizeof(pTab->aCol[0])*pTab->nCol);
  testcase( aCol==0 );
  for(i=0, pCol=aCol; i<pTab->nCol; i++, pCol++){
    Expr *p;
    char *zType;
    char *zName;
    int nName;
    CollSeq *pColl;
    int cnt;
    NameContext sNC;
    




    /* Get an appropriate name for the column
    */
    p = pEList->a[i].pExpr;
    assert( p->pRight==0 || p->pRight->token.z==0 || p->pRight->token.z[0]!=0 );
    if( (zName = pEList->a[i].zName)!=0 ){
      /* If the column contains an "AS <name>" phrase, use <name> as the name */
      zName = sqlite3DbStrDup(db, zName);



    }else if( p->op==TK_COLUMN && p->pTab ){
      /* For columns use the column name name */
      int iCol = p->iColumn;
      if( iCol<0 ) iCol = p->pTab->iPKey;
      zName = sqlite3MPrintf(db, "%s", p->pTab->aCol[iCol].zName);
    }else{
      /* Use the original text of the column expression as its name */
      zName = sqlite3MPrintf(db, "%T", &p->span);

    }
    if( db->mallocFailed ){
      sqlite3DbFree(db, zName);
      break;
    }
    sqlite3Dequote(zName);








|
>
>
|
<
|
|
<
>
>
|
>
>

>
|
<
<
|
>
|
>

|
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
<
<
<
|
<
|
|
<
<
<
|
>
>
>
>







>
>
>
|
|
|
|
|
|
|
|
>







1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134

1135
1136

1137
1138
1139
1140
1141
1142
1143
1144


1145
1146
1147
1148
1149
1150
1151
























1152



1153

1154
1155



1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
    default:           z = "UNION";       break;
  }
  return z;
}
#endif /* SQLITE_OMIT_COMPOUND_SELECT */

/*
** Given a an expression list (which is really the list of expressions
** that form the result set of a SELECT statement) compute appropriate
** column names for a table that would hold the expression list.
**

** All column names will be unique.
**

** Only the column names are computed.  Column.zType, Column.zColl,
** and other fields of Column are zeroed.
**
** Return SQLITE_OK on success.  If a memory allocation error occurs,
** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
*/
static int selectColumnsFromExprList(
  Parse *pParse,          /* Parsing context */


  ExprList *pEList,       /* Expr list from which to derive column names */
  int *pnCol,             /* Write the number of columns here */
  Column **paCol          /* Write the new column list here */
){
  sqlite3 *db = pParse->db;
  int i, j, cnt;
  Column *aCol, *pCol;
























  int nCol;



  Expr *p;

  char *zName;
  int nName;




  *pnCol = nCol = pEList->nExpr;
  aCol = *paCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
  if( aCol==0 ) return SQLITE_NOMEM;
  for(i=0, pCol=aCol; i<nCol; i++, pCol++){
    /* Get an appropriate name for the column
    */
    p = pEList->a[i].pExpr;
    assert( p->pRight==0 || p->pRight->token.z==0 || p->pRight->token.z[0]!=0 );
    if( (zName = pEList->a[i].zName)!=0 ){
      /* If the column contains an "AS <name>" phrase, use <name> as the name */
      zName = sqlite3DbStrDup(db, zName);
    }else{
      Expr *pCol = p;
      while( pCol->op==TK_DOT ) pCol = pCol->pRight;
      if( pCol->op==TK_COLUMN && pCol->pTab ){
        /* For columns use the column name name */
        int iCol = pCol->iColumn;
        if( iCol<0 ) iCol = pCol->pTab->iPKey;
        zName = sqlite3MPrintf(db, "%s", pCol->pTab->aCol[iCol].zName);
      }else{
        /* Use the original text of the column expression as its name */
        zName = sqlite3MPrintf(db, "%T", &pCol->span);
      }
    }
    if( db->mallocFailed ){
      sqlite3DbFree(db, zName);
      break;
    }
    sqlite3Dequote(zName);

1214
1215
1216
1217
1218
1219
1220
1221












1222



1223






1224


















1225
1226



1227
1228
1229
1230
1231
1232
1233
1234



























1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
        sqlite3DbFree(db, zName);
        zName = zNewName;
        j = -1;
        if( zName==0 ) break;
      }
    }
    pCol->zName = zName;













    /* Get the typename, type affinity, and collating sequence for the



    ** column.






    */


















    memset(&sNC, 0, sizeof(sNC));
    sNC.pSrcList = pSelect->pSrc;



    zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0));
    pCol->zType = zType;
    pCol->affinity = sqlite3ExprAffinity(p);
    pColl = sqlite3ExprCollSeq(pParse, p);
    if( pColl ){
      pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
    }
  }



























  pTab->iPKey = -1;
  if( db->mallocFailed ){
    sqlite3DeleteTable(pTab);
    return 0;
  }
  return pTab;
}

/*
** Prepare a SELECT statement for processing by doing the following
** things:
**
**    (1)  Make sure VDBE cursor numbers have been assigned to every
**         element of the FROM clause.
**
**    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that 
**         defines FROM clause.  When views appear in the FROM clause,
**         fill pTabList->a[].pSelect with a copy of the SELECT statement
**         that implements the view.  A copy is made of the view's SELECT
**         statement so that we can freely modify or delete that statement
**         without worrying about messing up the presistent representation
**         of the view.
**
**    (3)  Add terms to the WHERE clause to accomodate the NATURAL keyword
**         on joins and the ON and USING clause of joins.
**
**    (4)  Scan the list of columns in the result set (pEList) looking
**         for instances of the "*" operator or the TABLE.* operator.
**         If found, expand each "*" to be every column in every table
**         and TABLE.* to be every column in TABLE.
**
** Return 0 on success.  If there are problems, leave an error message
** in pParse and return non-zero.
*/
static int prepSelectStmt(Parse *pParse, Select *p){
  int i, j, k, rc;
  SrcList *pTabList;
  ExprList *pEList;
  struct SrcList_item *pFrom;
  sqlite3 *db = pParse->db;

  if( p==0 || p->pSrc==0 || db->mallocFailed ){
    return 1;
  }
  pTabList = p->pSrc;
  pEList = p->pEList;

  /* Make sure cursor numbers have been assigned to all entries in
  ** the FROM clause of the SELECT statement.
  */
  sqlite3SrcListAssignCursors(pParse, p->pSrc);

  /* Look up every table named in the FROM clause of the select.  If
  ** an entry of the FROM clause is a subquery instead of a table or view,
  ** then create a transient table structure to describe the subquery.
  */
  for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
    Table *pTab;
    if( pFrom->pTab!=0 ){
      /* This statement has already been prepared.  There is no need
      ** to go further. */
      assert( i==0 );
      return 0;
    }
    if( pFrom->zName==0 ){
#ifndef SQLITE_OMIT_SUBQUERY
      /* A sub-query in the FROM clause of a SELECT */
      assert( pFrom->pSelect!=0 );
      if( pFrom->zAlias==0 ){
        pFrom->zAlias =
          sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pFrom->pSelect);
      }
      assert( pFrom->pTab==0 );
      pFrom->pTab = pTab = 
        sqlite3ResultSetOfSelect(pParse, pFrom->zAlias, pFrom->pSelect);
      if( pTab==0 ){
        return 1;
      }
      /* The isEphem flag indicates that the Table structure has been
      ** dynamically allocated and may be freed at any time.  In other words,
      ** pTab is not pointing to a persistent table structure that defines
      ** part of the schema. */
      pTab->isEphem = 1;
#endif
    }else{
      /* An ordinary table or view name in the FROM clause */
      assert( pFrom->pTab==0 );
      pFrom->pTab = pTab = 
        sqlite3LocateTable(pParse,0,pFrom->zName,pFrom->zDatabase);
      if( pTab==0 ){
        return 1;
      }
      pTab->nRef++;
#if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
      if( pTab->pSelect || IsVirtual(pTab) ){
        /* We reach here if the named table is a really a view */
        if( sqlite3ViewGetColumnNames(pParse, pTab) ){
          return 1;
        }
        /* If pFrom->pSelect!=0 it means we are dealing with a
        ** view within a view.  The SELECT structure has already been
        ** copied by the outer view so we can skip the copy step here
        ** in the inner view.
        */
        if( pFrom->pSelect==0 ){
          pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect);
        }
      }
#endif
    }
  }

  /* Process NATURAL keywords, and ON and USING clauses of joins.
  */
  if( sqliteProcessJoin(pParse, p) ) return 1;

  /* For every "*" that occurs in the column list, insert the names of
  ** all columns in all tables.  And for every TABLE.* insert the names
  ** of all columns in TABLE.  The parser inserted a special expression
  ** with the TK_ALL operator for each "*" that it found in the column list.
  ** The following code just has to locate the TK_ALL expressions and expand
  ** each one to the list of all columns in all tables.
  **
  ** The first loop just checks to see if there are any "*" operators
  ** that need expanding.
  */
  for(k=0; k<pEList->nExpr; k++){
    Expr *pE = pEList->a[k].pExpr;
    if( pE->op==TK_ALL ) break;
    if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL
         && pE->pLeft && pE->pLeft->op==TK_ID ) break;
  }
  rc = 0;
  if( k<pEList->nExpr ){
    /*
    ** If we get here it means the result set contains one or more "*"
    ** operators that need to be expanded.  Loop through each expression
    ** in the result set and expand them one by one.
    */
    struct ExprList_item *a = pEList->a;
    ExprList *pNew = 0;
    int flags = pParse->db->flags;
    int longNames = (flags & SQLITE_FullColNames)!=0
                      && (flags & SQLITE_ShortColNames)==0;

    for(k=0; k<pEList->nExpr; k++){
      Expr *pE = a[k].pExpr;
      if( pE->op!=TK_ALL &&
           (pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){
        /* This particular expression does not need to be expanded.
        */
        pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr, 0);
        if( pNew ){
          pNew->a[pNew->nExpr-1].zName = a[k].zName;
        }else{
          rc = 1;
        }
        a[k].pExpr = 0;
        a[k].zName = 0;
      }else{
        /* This expression is a "*" or a "TABLE.*" and needs to be
        ** expanded. */
        int tableSeen = 0;      /* Set to 1 when TABLE matches */
        char *zTName;            /* text of name of TABLE */
        if( pE->op==TK_DOT && pE->pLeft ){
          zTName = sqlite3NameFromToken(db, &pE->pLeft->token);
        }else{
          zTName = 0;
        }
        for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
          Table *pTab = pFrom->pTab;
          char *zTabName = pFrom->zAlias;
          if( zTabName==0 || zTabName[0]==0 ){ 
            zTabName = pTab->zName;
          }
          assert( zTabName );
          if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
            continue;
          }
          tableSeen = 1;
          for(j=0; j<pTab->nCol; j++){
            Expr *pExpr, *pRight;
            char *zName = pTab->aCol[j].zName;

            /* If a column is marked as 'hidden' (currently only possible
            ** for virtual tables), do not include it in the expanded
            ** result-set list.
            */
            if( IsHiddenColumn(&pTab->aCol[j]) ){
              assert(IsVirtual(pTab));
              continue;
            }

            if( i>0 ){
              struct SrcList_item *pLeft = &pTabList->a[i-1];
              if( (pLeft[1].jointype & JT_NATURAL)!=0 &&
                        columnIndex(pLeft->pTab, zName)>=0 ){
                /* In a NATURAL join, omit the join columns from the 
                ** table on the right */
                continue;
              }
              if( sqlite3IdListIndex(pLeft[1].pUsing, zName)>=0 ){
                /* In a join with a USING clause, omit columns in the
                ** using clause from the table on the right. */
                continue;
              }
            }
            pRight = sqlite3PExpr(pParse, TK_ID, 0, 0, 0);
            if( pRight==0 ) break;
            setQuotedToken(pParse, &pRight->token, zName);
            if( longNames || pTabList->nSrc>1 ){
              Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, 0);
              pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
              if( pExpr==0 ) break;
              setQuotedToken(pParse, &pLeft->token, zTabName);
#if 1
              setToken(&pExpr->span, 
                  sqlite3MPrintf(db, "%s.%s", zTabName, zName));
              pExpr->span.dyn = 1;
#else
              pExpr->span = pRight->token;
              pExpr->span.dyn = 0;
#endif
              pExpr->token.z = 0;
              pExpr->token.n = 0;
              pExpr->token.dyn = 0;
            }else{
              pExpr = pRight;
              pExpr->span = pExpr->token;
              pExpr->span.dyn = 0;
            }
            if( longNames ){
              pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pExpr->span);
            }else{
              pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pRight->token);
            }
          }
        }
        if( !tableSeen ){
          if( zTName ){
            sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
          }else{
            sqlite3ErrorMsg(pParse, "no tables specified");
          }
          rc = 1;
        }
        sqlite3DbFree(db, zTName);
      }
    }
    sqlite3ExprListDelete(db, pEList);
    p->pEList = pNew;
  }
#if SQLITE_MAX_COLUMN
  if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
    sqlite3ErrorMsg(pParse, "too many columns in result set");
    rc = SQLITE_ERROR;
  }
#endif
  if( db->mallocFailed ){
    rc = SQLITE_NOMEM;
  }
  return rc;
}

/*
** pE is a pointer to an expression which is a single term in
** ORDER BY or GROUP BY clause.
**
** At the point this routine is called, we already know that the
** ORDER BY term is not an integer index into the result set.  That
** casee is handled by the calling routine.
**
** If pE is a well-formed expression and the SELECT statement
** is not compound, then return 0.  This indicates to the
** caller that it should sort by the value of the ORDER BY
** expression.
**
** If the SELECT is compound, then attempt to match pE against
** result set columns in the left-most SELECT statement.  Return
** the index i of the matching column, as an indication to the 
** caller that it should sort by the i-th column.  If there is
** no match, return -1 and leave an error message in pParse.
*/
static int matchOrderByTermToExprList(
  Parse *pParse,     /* Parsing context for error messages */
  Select *pSelect,   /* The SELECT statement with the ORDER BY clause */
  Expr *pE,          /* The specific ORDER BY term */
  int idx,           /* When ORDER BY term is this */
  int isCompound,    /* True if this is a compound SELECT */
  u8 *pHasAgg        /* True if expression contains aggregate functions */
){
  int i;             /* Loop counter */
  ExprList *pEList;  /* The columns of the result set */
  NameContext nc;    /* Name context for resolving pE */

  assert( sqlite3ExprIsInteger(pE, &i)==0 );
  pEList = pSelect->pEList;

  /* If the term is a simple identifier that try to match that identifier
  ** against a column name in the result set.
  */
  if( pE->op==TK_ID || (pE->op==TK_STRING && pE->token.z[0]!='\'') ){
    sqlite3 *db = pParse->db;
    char *zCol = sqlite3NameFromToken(db, &pE->token);
    if( zCol==0 ){
      return -1;
    }
    for(i=0; i<pEList->nExpr; i++){
      char *zAs = pEList->a[i].zName;
      if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){
        sqlite3DbFree(db, zCol);
        return i+1;
      }
    }
    sqlite3DbFree(db, zCol);
  }

  /* Resolve all names in the ORDER BY term expression
  */
  memset(&nc, 0, sizeof(nc));
  nc.pParse = pParse;
  nc.pSrcList = pSelect->pSrc;
  nc.pEList = pEList;
  nc.allowAgg = 1;
  nc.nErr = 0;
  if( sqlite3ExprResolveNames(&nc, pE) ){
    if( isCompound ){
      sqlite3ErrorClear(pParse);
      return 0;
    }else{
      return -1;
    }
  }
  if( nc.hasAgg && pHasAgg ){
    *pHasAgg = 1;
  }

  /* For a compound SELECT, we need to try to match the ORDER BY
  ** expression against an expression in the result set
  */
  if( isCompound ){
    for(i=0; i<pEList->nExpr; i++){
      if( sqlite3ExprCompare(pEList->a[i].pExpr, pE) ){
        return i+1;
      }
    }
  }
  return 0;
}


/*
** Analyze and ORDER BY or GROUP BY clause in a simple SELECT statement.
** Return the number of errors seen.
**
** Every term of the ORDER BY or GROUP BY clause needs to be an
** expression.  If any expression is an integer constant, then
** that expression is replaced by the corresponding 
** expression from the result set.
*/
static int processOrderGroupBy(
  Parse *pParse,        /* Parsing context.  Leave error messages here */
  Select *pSelect,      /* The SELECT statement containing the clause */
  ExprList *pOrderBy,   /* The ORDER BY or GROUP BY clause to be processed */
  int isOrder,          /* 1 for ORDER BY.  0 for GROUP BY */
  u8 *pHasAgg           /* Set to TRUE if any term contains an aggregate */
){
  int i;
  sqlite3 *db = pParse->db;
  ExprList *pEList;

  if( pOrderBy==0 || pParse->db->mallocFailed ) return 0;
#if SQLITE_MAX_COLUMN
  if( pOrderBy->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
    const char *zType = isOrder ? "ORDER" : "GROUP";
    sqlite3ErrorMsg(pParse, "too many terms in %s BY clause", zType);
    return 1;
  }
#endif
  pEList = pSelect->pEList;
  if( pEList==0 ){
    return 0;
  }
  for(i=0; i<pOrderBy->nExpr; i++){
    int iCol;
    Expr *pE = pOrderBy->a[i].pExpr;
    if( sqlite3ExprIsInteger(pE, &iCol) ){
      if( iCol<=0 || iCol>pEList->nExpr ){
        const char *zType = isOrder ? "ORDER" : "GROUP";
        sqlite3ErrorMsg(pParse, 
           "%r %s BY term out of range - should be "
           "between 1 and %d", i+1, zType, pEList->nExpr);
        return 1;
      }
    }else{
      iCol = matchOrderByTermToExprList(pParse, pSelect, pE, i+1, 0, pHasAgg);
      if( iCol<0 ){
        return 1;
      }
    }
    if( iCol>0 ){
      CollSeq *pColl = pE->pColl;
      int flags = pE->flags & EP_ExpCollate;
      sqlite3ExprDelete(db, pE);
      pE = sqlite3ExprDup(db, pEList->a[iCol-1].pExpr);
      pOrderBy->a[i].pExpr = pE;
      if( pE && pColl && flags ){
        pE->pColl = pColl;
        pE->flags |= flags;
      }
    }
  }
  return 0;
}

/*
** Analyze and ORDER BY or GROUP BY clause in a SELECT statement.  Return
** the number of errors seen.
**
** If iTable>0 then make the N-th term of the ORDER BY clause refer to
** the N-th column of table iTable.
**
** If iTable==0 then transform each term of the ORDER BY clause to refer
** to a column of the result set by number.
*/
static int processCompoundOrderBy(
  Parse *pParse,        /* Parsing context.  Leave error messages here */
  Select *pSelect       /* The SELECT statement containing the ORDER BY */
){
  int i;
  ExprList *pOrderBy;
  ExprList *pEList;
  sqlite3 *db;
  int moreToDo = 1;

  pOrderBy = pSelect->pOrderBy;
  if( pOrderBy==0 ) return 0;
  db = pParse->db;
#if SQLITE_MAX_COLUMN
  if( pOrderBy->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
    sqlite3ErrorMsg(pParse, "too many terms in ORDER BY clause");
    return 1;
  }
#endif
  for(i=0; i<pOrderBy->nExpr; i++){
    pOrderBy->a[i].done = 0;
  }
  while( pSelect->pPrior ){
    pSelect = pSelect->pPrior;
  }
  while( pSelect && moreToDo ){
    moreToDo = 0;
    pEList = pSelect->pEList;
    if( pEList==0 ){
      return 1;
    }
    for(i=0; i<pOrderBy->nExpr; i++){
      int iCol = -1;
      Expr *pE, *pDup;
      if( pOrderBy->a[i].done ) continue;
      pE = pOrderBy->a[i].pExpr;
      if( sqlite3ExprIsInteger(pE, &iCol) ){
        if( iCol<0 || iCol>pEList->nExpr ){
          sqlite3ErrorMsg(pParse, 
             "%r ORDER BY term out of range - should be "
             "between 1 and %d", i+1, pEList->nExpr);
          return 1;
        }
      }else{
        pDup = sqlite3ExprDup(db, pE);
        if( !db->mallocFailed ){
          assert(pDup);
          iCol = matchOrderByTermToExprList(pParse, pSelect, pDup, i+1, 1, 0);
        }
        sqlite3ExprDelete(db, pDup);
        if( iCol<0 ){
          return 1;
        }
      }
      if( iCol>0 ){
        pE->op = TK_INTEGER;
        pE->flags |= EP_IntValue;
        pE->iTable = iCol;
        pOrderBy->a[i].done = 1;
      }else{
        moreToDo = 1;
      }
    }
    pSelect = pSelect->pNext;
  }
  for(i=0; i<pOrderBy->nExpr; i++){
    if( pOrderBy->a[i].done==0 ){
      sqlite3ErrorMsg(pParse, "%r ORDER BY term does not match any "
            "column in the result set", i+1);
      return 1;
    }
  }
  return 0;
}

/*
** Get a VDBE for the given parser context.  Create a new one if necessary.
** If an error occurs, return NULL and leave a message in pParse.
*/
Vdbe *sqlite3GetVdbe(Parse *pParse){
  Vdbe *v = pParse->pVdbe;
  if( v==0 ){







|
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
|
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
|
>
>
>
|
<






>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>








<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251

1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292












































































































































































































































































































































































































































































































1293
1294
1295
1296
1297
1298
1299
        sqlite3DbFree(db, zName);
        zName = zNewName;
        j = -1;
        if( zName==0 ) break;
      }
    }
    pCol->zName = zName;
  }
  if( db->mallocFailed ){
    int j;
    for(j=0; j<i; j++){
      sqlite3DbFree(db, aCol[j].zName);
    }
    sqlite3DbFree(db, aCol);
    *paCol = 0;
    *pnCol = 0;
    return SQLITE_NOMEM;
  }
  return SQLITE_OK;
}

/*
** Add type and collation information to a column list based on
** a SELECT statement.
** 
** The column list presumably came from selectColumnNamesFromExprList().
** The column list has only names, not types or collations.  This
** routine goes through and adds the types and collations.
**
** This routine requires that all indentifiers in the SELECT
** statement be resolved.
*/
static void selectAddColumnTypeAndCollation(
  Parse *pParse,        /* Parsing contexts */
  int nCol,             /* Number of columns */
  Column *aCol,         /* List of columns */
  Select *pSelect       /* SELECT used to determine types and collations */
){
  sqlite3 *db = pParse->db;
  NameContext sNC;
  Column *pCol;
  CollSeq *pColl;
  int i;
  Expr *p;
  struct ExprList_item *a;

  assert( pSelect!=0 );
  assert( (pSelect->selFlags & SF_Resolved)!=0 );
  assert( nCol==pSelect->pEList->nExpr || db->mallocFailed );
  if( db->mallocFailed ) return;
  memset(&sNC, 0, sizeof(sNC));
  sNC.pSrcList = pSelect->pSrc;
  a = pSelect->pEList->a;
  for(i=0, pCol=aCol; i<nCol; i++, pCol++){
    p = a[i].pExpr;
    pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0));

    pCol->affinity = sqlite3ExprAffinity(p);
    pColl = sqlite3ExprCollSeq(pParse, p);
    if( pColl ){
      pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
    }
  }
}

/*
** Given a SELECT statement, generate a Table structure that describes
** the result set of that SELECT.
*/
Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
  Table *pTab;
  sqlite3 *db = pParse->db;
  int savedFlags;

  savedFlags = db->flags;
  db->flags &= ~SQLITE_FullColNames;
  db->flags |= SQLITE_ShortColNames;
  sqlite3SelectPrep(pParse, pSelect, 0);
  if( pParse->nErr ) return 0;
  while( pSelect->pPrior ) pSelect = pSelect->pPrior;
  db->flags = savedFlags;
  pTab = sqlite3DbMallocZero(db, sizeof(Table) );
  if( pTab==0 ){
    return 0;
  }
  pTab->db = db;
  pTab->nRef = 1;
  pTab->zName = 0;
  selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
  selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSelect);
  pTab->iPKey = -1;
  if( db->mallocFailed ){
    sqlite3DeleteTable(pTab);
    return 0;
  }
  return pTab;
}













































































































































































































































































































































































































































































































/*
** Get a VDBE for the given parser context.  Create a new one if necessary.
** If an error occurs, return NULL and leave a message in pParse.
*/
Vdbe *sqlite3GetVdbe(Parse *pParse){
  Vdbe *v = pParse->pVdbe;
  if( v==0 ){
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
  */
  switch( p->op ){
    case TK_ALL: {
      int addr = 0;
      assert( !pPrior->pLimit );
      pPrior->pLimit = p->pLimit;
      pPrior->pOffset = p->pOffset;
      rc = sqlite3Select(pParse, pPrior, &dest, 0, 0, 0);
      p->pLimit = 0;
      p->pOffset = 0;
      if( rc ){
        goto multi_select_end;
      }
      p->pPrior = 0;
      p->iLimit = pPrior->iLimit;
      p->iOffset = pPrior->iOffset;
      if( p->iLimit ){
        addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit);
        VdbeComment((v, "Jump ahead if LIMIT reached"));
      }
      rc = sqlite3Select(pParse, p, &dest, 0, 0, 0);
      pDelete = p->pPrior;
      p->pPrior = pPrior;
      if( rc ){
        goto multi_select_end;
      }
      if( addr ){
        sqlite3VdbeJumpHere(v, addr);







|












|







1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
  */
  switch( p->op ){
    case TK_ALL: {
      int addr = 0;
      assert( !pPrior->pLimit );
      pPrior->pLimit = p->pLimit;
      pPrior->pOffset = p->pOffset;
      rc = sqlite3Select(pParse, pPrior, &dest);
      p->pLimit = 0;
      p->pOffset = 0;
      if( rc ){
        goto multi_select_end;
      }
      p->pPrior = 0;
      p->iLimit = pPrior->iLimit;
      p->iOffset = pPrior->iOffset;
      if( p->iLimit ){
        addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit);
        VdbeComment((v, "Jump ahead if LIMIT reached"));
      }
      rc = sqlite3Select(pParse, p, &dest);
      pDelete = p->pPrior;
      p->pPrior = pPrior;
      if( rc ){
        goto multi_select_end;
      }
      if( addr ){
        sqlite3VdbeJumpHere(v, addr);
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
        ** intermediate results.
        */
        unionTab = pParse->nTab++;
        assert( p->pOrderBy==0 );
        addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
        assert( p->addrOpenEphm[0] == -1 );
        p->addrOpenEphm[0] = addr;
        p->pRightmost->usesEphm = 1;
        assert( p->pEList );
      }

      /* Code the SELECT statements to our left
      */
      assert( !pPrior->pOrderBy );
      sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
      rc = sqlite3Select(pParse, pPrior, &uniondest, 0, 0, 0);
      if( rc ){
        goto multi_select_end;
      }

      /* Code the current SELECT statement
      */
      if( p->op==TK_EXCEPT ){
        op = SRT_Except;
      }else{
        assert( p->op==TK_UNION );
        op = SRT_Union;
      }
      p->pPrior = 0;
      p->disallowOrderBy = 0;
      pLimit = p->pLimit;
      p->pLimit = 0;
      pOffset = p->pOffset;
      p->pOffset = 0;
      uniondest.eDest = op;
      rc = sqlite3Select(pParse, p, &uniondest, 0, 0, 0);
      /* Query flattening in sqlite3Select() might refill p->pOrderBy.
      ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
      sqlite3ExprListDelete(db, p->pOrderBy);
      pDelete = p->pPrior;
      p->pPrior = pPrior;
      p->pOrderBy = 0;
      sqlite3ExprDelete(db, p->pLimit);







|







|













<





|







1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576

1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
        ** intermediate results.
        */
        unionTab = pParse->nTab++;
        assert( p->pOrderBy==0 );
        addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
        assert( p->addrOpenEphm[0] == -1 );
        p->addrOpenEphm[0] = addr;
        p->pRightmost->selFlags |= SF_UsesEphemeral;
        assert( p->pEList );
      }

      /* Code the SELECT statements to our left
      */
      assert( !pPrior->pOrderBy );
      sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
      rc = sqlite3Select(pParse, pPrior, &uniondest);
      if( rc ){
        goto multi_select_end;
      }

      /* Code the current SELECT statement
      */
      if( p->op==TK_EXCEPT ){
        op = SRT_Except;
      }else{
        assert( p->op==TK_UNION );
        op = SRT_Union;
      }
      p->pPrior = 0;

      pLimit = p->pLimit;
      p->pLimit = 0;
      pOffset = p->pOffset;
      p->pOffset = 0;
      uniondest.eDest = op;
      rc = sqlite3Select(pParse, p, &uniondest);
      /* Query flattening in sqlite3Select() might refill p->pOrderBy.
      ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
      sqlite3ExprListDelete(db, p->pOrderBy);
      pDelete = p->pPrior;
      p->pPrior = pPrior;
      p->pOrderBy = 0;
      sqlite3ExprDelete(db, p->pLimit);
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055

      /* Convert the data in the temporary table into whatever form
      ** it is that we currently need.
      */      
      if( dest.eDest!=priorOp || unionTab!=dest.iParm ){
        int iCont, iBreak, iStart;
        assert( p->pEList );
        if( dest.eDest==SRT_Callback ){
          Select *pFirst = p;
          while( pFirst->pPrior ) pFirst = pFirst->pPrior;
          generateColumnNames(pParse, 0, pFirst->pEList);
        }
        iBreak = sqlite3VdbeMakeLabel(v);
        iCont = sqlite3VdbeMakeLabel(v);
        computeLimitRegisters(pParse, p, iBreak);







|







1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612

      /* Convert the data in the temporary table into whatever form
      ** it is that we currently need.
      */      
      if( dest.eDest!=priorOp || unionTab!=dest.iParm ){
        int iCont, iBreak, iStart;
        assert( p->pEList );
        if( dest.eDest==SRT_Output ){
          Select *pFirst = p;
          while( pFirst->pPrior ) pFirst = pFirst->pPrior;
          generateColumnNames(pParse, 0, pFirst->pEList);
        }
        iBreak = sqlite3VdbeMakeLabel(v);
        iCont = sqlite3VdbeMakeLabel(v);
        computeLimitRegisters(pParse, p, iBreak);
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
      tab1 = pParse->nTab++;
      tab2 = pParse->nTab++;
      assert( p->pOrderBy==0 );

      addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
      assert( p->addrOpenEphm[0] == -1 );
      p->addrOpenEphm[0] = addr;
      p->pRightmost->usesEphm = 1;
      assert( p->pEList );

      /* Code the SELECTs to our left into temporary table "tab1".
      */
      sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
      rc = sqlite3Select(pParse, pPrior, &intersectdest, 0, 0, 0);
      if( rc ){
        goto multi_select_end;
      }

      /* Code the current SELECT into temporary table "tab2"
      */
      addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
      assert( p->addrOpenEphm[1] == -1 );
      p->addrOpenEphm[1] = addr;
      p->pPrior = 0;
      pLimit = p->pLimit;
      p->pLimit = 0;
      pOffset = p->pOffset;
      p->pOffset = 0;
      intersectdest.iParm = tab2;
      rc = sqlite3Select(pParse, p, &intersectdest, 0, 0, 0);
      pDelete = p->pPrior;
      p->pPrior = pPrior;
      sqlite3ExprDelete(db, p->pLimit);
      p->pLimit = pLimit;
      p->pOffset = pOffset;
      if( rc ){
        goto multi_select_end;
      }

      /* Generate code to take the intersection of the two temporary
      ** tables.
      */
      assert( p->pEList );
      if( dest.eDest==SRT_Callback ){
        Select *pFirst = p;
        while( pFirst->pPrior ) pFirst = pFirst->pPrior;
        generateColumnNames(pParse, 0, pFirst->pEList);
      }
      iBreak = sqlite3VdbeMakeLabel(v);
      iCont = sqlite3VdbeMakeLabel(v);
      computeLimitRegisters(pParse, p, iBreak);







|





|















|













|







1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
      tab1 = pParse->nTab++;
      tab2 = pParse->nTab++;
      assert( p->pOrderBy==0 );

      addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
      assert( p->addrOpenEphm[0] == -1 );
      p->addrOpenEphm[0] = addr;
      p->pRightmost->selFlags |= SF_UsesEphemeral;
      assert( p->pEList );

      /* Code the SELECTs to our left into temporary table "tab1".
      */
      sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
      rc = sqlite3Select(pParse, pPrior, &intersectdest);
      if( rc ){
        goto multi_select_end;
      }

      /* Code the current SELECT into temporary table "tab2"
      */
      addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
      assert( p->addrOpenEphm[1] == -1 );
      p->addrOpenEphm[1] = addr;
      p->pPrior = 0;
      pLimit = p->pLimit;
      p->pLimit = 0;
      pOffset = p->pOffset;
      p->pOffset = 0;
      intersectdest.iParm = tab2;
      rc = sqlite3Select(pParse, p, &intersectdest);
      pDelete = p->pPrior;
      p->pPrior = pPrior;
      sqlite3ExprDelete(db, p->pLimit);
      p->pLimit = pLimit;
      p->pOffset = pOffset;
      if( rc ){
        goto multi_select_end;
      }

      /* Generate code to take the intersection of the two temporary
      ** tables.
      */
      assert( p->pEList );
      if( dest.eDest==SRT_Output ){
        Select *pFirst = p;
        while( pFirst->pPrior ) pFirst = pFirst->pPrior;
        generateColumnNames(pParse, 0, pFirst->pEList);
      }
      iBreak = sqlite3VdbeMakeLabel(v);
      iCont = sqlite3VdbeMakeLabel(v);
      computeLimitRegisters(pParse, p, iBreak);
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
  ** Attach the KeyInfo structure to all temporary tables.
  **
  ** This section is run by the right-most SELECT statement only.
  ** SELECT statements to the left always skip this part.  The right-most
  ** SELECT might also skip this part if it has no ORDER BY clause and
  ** no temp tables are required.
  */
  if( p->usesEphm ){
    int i;                        /* Loop counter */
    KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
    Select *pLoop;                /* For looping through SELECT statements */
    CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
    int nCol;                     /* Number of columns in result set */

    assert( p->pRightmost==p );







|







1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
  ** Attach the KeyInfo structure to all temporary tables.
  **
  ** This section is run by the right-most SELECT statement only.
  ** SELECT statements to the left always skip this part.  The right-most
  ** SELECT might also skip this part if it has no ORDER BY clause and
  ** no temp tables are required.
  */
  if( p->selFlags & SF_UsesEphemeral ){
    int i;                        /* Loop counter */
    KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
    Select *pLoop;                /* For looping through SELECT statements */
    CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
    int nCol;                     /* Number of columns in result set */

    assert( p->pRightmost==p );
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331




2332
2333
2334
2335
2336
2337
2338
2339
      assert( pIn->nMem==1 );
      sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iParm, 1);
      /* The LIMIT clause will jump out of the loop for us */
      break;
    }
#endif /* #ifndef SQLITE_OMIT_SUBQUERY */

    /* Send the data to the callback function or to a subroutine.  In the
    ** case of a subroutine, the subroutine itself is responsible for
    ** popping the data from the stack.
    */
    case SRT_Coroutine: {
      if( pDest->iMem==0 ){
        pDest->iMem = sqlite3GetTempRange(pParse, pIn->nMem);
        pDest->nMem = pIn->nMem;
      }
      sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iMem, pDest->nMem);
      sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
      break;
    }





    case SRT_Callback: {
      sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iMem, pIn->nMem);
      sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, pIn->nMem);
      break;
    }

#if !defined(SQLITE_OMIT_TRIGGER)
    /* Discard the results.  This is used for SELECT statements inside







|
|
<











>
>
>
>
|







1868
1869
1870
1871
1872
1873
1874
1875
1876

1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
      assert( pIn->nMem==1 );
      sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iParm, 1);
      /* The LIMIT clause will jump out of the loop for us */
      break;
    }
#endif /* #ifndef SQLITE_OMIT_SUBQUERY */

    /* The results are stored in a sequence of registers
    ** starting at pDest->iMem.  Then the co-routine yields.

    */
    case SRT_Coroutine: {
      if( pDest->iMem==0 ){
        pDest->iMem = sqlite3GetTempRange(pParse, pIn->nMem);
        pDest->nMem = pIn->nMem;
      }
      sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iMem, pDest->nMem);
      sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
      break;
    }

    /* Results are stored in a sequence of registers.  Then the
    ** OP_ResultRow opcode is used to cause sqlite3_step() to return
    ** the next row of result.
    */
    case SRT_Output: {
      sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iMem, pIn->nMem);
      sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, pIn->nMem);
      break;
    }

#if !defined(SQLITE_OMIT_TRIGGER)
    /* Discard the results.  This is used for SELECT statements inside
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518

2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544

2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
  int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
  KeyInfo *pKeyDup;     /* Comparison information for duplicate removal */
  KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
  sqlite3 *db;          /* Database connection */
  ExprList *pOrderBy;   /* The ORDER BY clause */
  int nOrderBy;         /* Number of terms in the ORDER BY clause */
  int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
  u8 NotUsed;           /* Dummy variables */

  assert( p->pOrderBy!=0 );
  db = pParse->db;
  v = pParse->pVdbe;
  if( v==0 ) return SQLITE_NOMEM;
  labelEnd = sqlite3VdbeMakeLabel(v);
  labelCmpr = sqlite3VdbeMakeLabel(v);


  /* Patch up the ORDER BY clause
  */
  op = p->op;  
  pPrior = p->pPrior;
  assert( pPrior->pOrderBy==0 );
  pOrderBy = p->pOrderBy;
  assert( pOrderBy );
  if( processCompoundOrderBy(pParse, p) ){
    return SQLITE_ERROR;
  }
  nOrderBy = pOrderBy->nExpr;

  /* For operators other than UNION ALL we have to make sure that
  ** the ORDER BY clause covers every term of the result set.  Add
  ** terms to the ORDER BY clause as necessary.
  */
  if( op!=TK_ALL ){
    for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){

      for(j=0; j<nOrderBy; j++){
        Expr *pTerm = pOrderBy->a[j].pExpr;
        assert( pTerm->op==TK_INTEGER );
        assert( (pTerm->flags & EP_IntValue)!=0 );
        if( pTerm->iTable==i ) break;
      }
      if( j==nOrderBy ){
        Expr *pNew = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, 0);
        if( pNew==0 ) return SQLITE_NOMEM;
        pNew->flags |= EP_IntValue;
        pNew->iTable = i;
        pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew, 0);
        nOrderBy++;
      }
    }
  }

  /* Compute the comparison permutation and keyinfo that is used with
  ** the permutation in order to comparisons to determine if the next
  ** row of results comes from selectA or selectB.  Also add explicit
  ** collations to the ORDER BY clause terms so that when the subqueries
  ** to the right and the left are evaluated, they use the correct
  ** collation.
  */
  aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy);
  if( aPermute ){

    for(i=0; i<nOrderBy; i++){
      Expr *pTerm = pOrderBy->a[i].pExpr;
      assert( pTerm->op==TK_INTEGER );
      assert( (pTerm->flags & EP_IntValue)!=0 );
      aPermute[i] = pTerm->iTable-1;
      assert( aPermute[i]>=0 && aPermute[i]<p->pEList->nExpr );
    }
    pKeyMerge =
      sqlite3DbMallocRaw(db, sizeof(*pKeyMerge)+nOrderBy*(sizeof(CollSeq*)+1));
    if( pKeyMerge ){
      pKeyMerge->aSortOrder = (u8*)&pKeyMerge->aColl[nOrderBy];
      pKeyMerge->nField = nOrderBy;
      pKeyMerge->enc = ENC(db);







<
















<
<
<








>
|
<
|
<
|







|













>
|
<
|
<
|
<







2044
2045
2046
2047
2048
2049
2050

2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066



2067
2068
2069
2070
2071
2072
2073
2074
2075
2076

2077

2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101

2102

2103

2104
2105
2106
2107
2108
2109
2110
  int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
  KeyInfo *pKeyDup;     /* Comparison information for duplicate removal */
  KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
  sqlite3 *db;          /* Database connection */
  ExprList *pOrderBy;   /* The ORDER BY clause */
  int nOrderBy;         /* Number of terms in the ORDER BY clause */
  int *aPermute;        /* Mapping from ORDER BY terms to result set columns */


  assert( p->pOrderBy!=0 );
  db = pParse->db;
  v = pParse->pVdbe;
  if( v==0 ) return SQLITE_NOMEM;
  labelEnd = sqlite3VdbeMakeLabel(v);
  labelCmpr = sqlite3VdbeMakeLabel(v);


  /* Patch up the ORDER BY clause
  */
  op = p->op;  
  pPrior = p->pPrior;
  assert( pPrior->pOrderBy==0 );
  pOrderBy = p->pOrderBy;
  assert( pOrderBy );



  nOrderBy = pOrderBy->nExpr;

  /* For operators other than UNION ALL we have to make sure that
  ** the ORDER BY clause covers every term of the result set.  Add
  ** terms to the ORDER BY clause as necessary.
  */
  if( op!=TK_ALL ){
    for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
      struct ExprList_item *pItem;
      for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){

        assert( pItem->iCol>0 );

        if( pItem->iCol==i ) break;
      }
      if( j==nOrderBy ){
        Expr *pNew = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, 0);
        if( pNew==0 ) return SQLITE_NOMEM;
        pNew->flags |= EP_IntValue;
        pNew->iTable = i;
        pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew, 0);
        pOrderBy->a[nOrderBy++].iCol = i;
      }
    }
  }

  /* Compute the comparison permutation and keyinfo that is used with
  ** the permutation in order to comparisons to determine if the next
  ** row of results comes from selectA or selectB.  Also add explicit
  ** collations to the ORDER BY clause terms so that when the subqueries
  ** to the right and the left are evaluated, they use the correct
  ** collation.
  */
  aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy);
  if( aPermute ){
    struct ExprList_item *pItem;
    for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){

      assert( pItem->iCol>0  && pItem->iCol<=p->pEList->nExpr );

      aPermute[i] = pItem->iCol - 1;

    }
    pKeyMerge =
      sqlite3DbMallocRaw(db, sizeof(*pKeyMerge)+nOrderBy*(sizeof(CollSeq*)+1));
    if( pKeyMerge ){
      pKeyMerge->aSortOrder = (u8*)&pKeyMerge->aColl[nOrderBy];
      pKeyMerge->nField = nOrderBy;
      pKeyMerge->enc = ENC(db);
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
    }
  }
 
  /* Separate the left and the right query from one another
  */
  p->pPrior = 0;
  pPrior->pRightmost = 0;
  processOrderGroupBy(pParse, p, p->pOrderBy, 1, &NotUsed);
  if( pPrior->pPrior==0 ){
    processOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, 1, &NotUsed);
  }

  /* Compute the limit registers */
  computeLimitRegisters(pParse, p, labelEnd);
  if( p->iLimit && op==TK_ALL ){
    regLimitA = ++pParse->nMem;
    regLimitB = ++pParse->nMem;







|

|







2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
    }
  }
 
  /* Separate the left and the right query from one another
  */
  p->pPrior = 0;
  pPrior->pRightmost = 0;
  sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
  if( pPrior->pPrior==0 ){
    sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
  }

  /* Compute the limit registers */
  computeLimitRegisters(pParse, p, labelEnd);
  if( p->iLimit && op==TK_ALL ){
    regLimitA = ++pParse->nMem;
    regLimitB = ++pParse->nMem;
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672


  /* Generate a coroutine to evaluate the SELECT statement to the
  ** left of the compound operator - the "A" select.
  */
  VdbeNoopComment((v, "Begin coroutine for left SELECT"));
  pPrior->iLimit = regLimitA;
  sqlite3Select(pParse, pPrior, &destA, 0, 0, 0);
  sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofA);
  sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
  VdbeNoopComment((v, "End coroutine for left SELECT"));

  /* Generate a coroutine to evaluate the SELECT statement on 
  ** the right - the "B" select
  */
  addrSelectB = sqlite3VdbeCurrentAddr(v);
  VdbeNoopComment((v, "Begin coroutine for right SELECT"));
  savedLimit = p->iLimit;
  savedOffset = p->iOffset;
  p->iLimit = regLimitB;
  p->iOffset = 0;  
  sqlite3Select(pParse, p, &destB, 0, 0, 0);
  p->iLimit = savedLimit;
  p->iOffset = savedOffset;
  sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofB);
  sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
  VdbeNoopComment((v, "End coroutine for right SELECT"));

  /* Generate a subroutine that outputs the current row of the A







|













|







2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225


  /* Generate a coroutine to evaluate the SELECT statement to the
  ** left of the compound operator - the "A" select.
  */
  VdbeNoopComment((v, "Begin coroutine for left SELECT"));
  pPrior->iLimit = regLimitA;
  sqlite3Select(pParse, pPrior, &destA);
  sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofA);
  sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
  VdbeNoopComment((v, "End coroutine for left SELECT"));

  /* Generate a coroutine to evaluate the SELECT statement on 
  ** the right - the "B" select
  */
  addrSelectB = sqlite3VdbeCurrentAddr(v);
  VdbeNoopComment((v, "Begin coroutine for right SELECT"));
  savedLimit = p->iLimit;
  savedOffset = p->iOffset;
  p->iLimit = regLimitB;
  p->iOffset = 0;  
  sqlite3Select(pParse, p, &destB);
  p->iLimit = savedLimit;
  p->iOffset = savedOffset;
  sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofB);
  sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
  VdbeNoopComment((v, "End coroutine for right SELECT"));

  /* Generate a subroutine that outputs the current row of the A
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787

  /* Jump to the this point in order to terminate the query.
  */
  sqlite3VdbeResolveLabel(v, labelEnd);

  /* Set the number of output columns
  */
  if( pDest->eDest==SRT_Callback ){
    Select *pFirst = pPrior;
    while( pFirst->pPrior ) pFirst = pFirst->pPrior;
    generateColumnNames(pParse, 0, pFirst->pEList);
  }

  /* Reassembly the compound query so that it will be freed correctly
  ** by the calling function */







|







2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340

  /* Jump to the this point in order to terminate the query.
  */
  sqlite3VdbeResolveLabel(v, labelEnd);

  /* Set the number of output columns
  */
  if( pDest->eDest==SRT_Output ){
    Select *pFirst = pPrior;
    while( pFirst->pPrior ) pFirst = pFirst->pPrior;
    generateColumnNames(pParse, 0, pFirst->pEList);
  }

  /* Reassembly the compound query so that it will be freed correctly
  ** by the calling function */
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029

3030

3031
3032
3033
3034
3035
3036
3037
3038
  ** and (14). */
  if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
  if( pSub->pOffset ) return 0;                          /* Restriction (14) */
  if( p->pRightmost && pSub->pLimit && pSub->pOrderBy ){
    return 0;                                            /* Restriction (15) */
  }
  if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
  if( (pSub->isDistinct || pSub->pLimit) 
         && (pSrc->nSrc>1 || isAgg) ){          /* Restrictions (4)(5)(8)(9) */
     return 0;       
  }

  if( p->isDistinct && subqueryIsAgg ) return 0;         /* Restriction (6)  */

  if( (p->disallowOrderBy || p->pOrderBy) && pSub->pOrderBy ){
     return 0;                                           /* Restriction (11) */
  }
  if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */

  /* OBSOLETE COMMENT 1:
  ** Restriction 3:  If the subquery is a join, make sure the subquery is 
  ** not used as the right operand of an outer join.  Examples of why this







|



>
|
>
|







2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
  ** and (14). */
  if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
  if( pSub->pOffset ) return 0;                          /* Restriction (14) */
  if( p->pRightmost && pSub->pLimit && pSub->pOrderBy ){
    return 0;                                            /* Restriction (15) */
  }
  if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
  if( ((pSub->selFlags & SF_Distinct)!=0 || pSub->pLimit) 
         && (pSrc->nSrc>1 || isAgg) ){          /* Restrictions (4)(5)(8)(9) */
     return 0;       
  }
  if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){
     return 0;         /* Restriction (6)  */
  }
  if( p->pOrderBy && pSub->pOrderBy ){
     return 0;                                           /* Restriction (11) */
  }
  if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */

  /* OBSOLETE COMMENT 1:
  ** Restriction 3:  If the subquery is a join, make sure the subquery is 
  ** not used as the right operand of an outer join.  Examples of why this
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101



3102
3103
3104
3105
3106
3107

3108
3109
3110
3111
3112
3113
3114

  /* Restriction 17: If the sub-query is a compound SELECT, then it must
  ** use only the UNION ALL operator. And none of the simple select queries
  ** that make up the compound SELECT are allowed to be aggregate or distinct
  ** queries.
  */
  if( pSub->pPrior ){
    if( p->pPrior || isAgg || p->isDistinct || pSrc->nSrc!=1 ){
      return 0;
    }
    for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
      if( pSub1->isAgg || pSub1->isDistinct 
       || (pSub1->pPrior && pSub1->op!=TK_ALL) 
       || !pSub1->pSrc || pSub1->pSrc->nSrc!=1
      ){
        return 0;
      }
    }

    /* Restriction 18. */
    if( p->pOrderBy ){
      int ii;
      for(ii=0; ii<p->pOrderBy->nExpr; ii++){
        Expr *pExpr = p->pOrderBy->a[ii].pExpr;
        if( pExpr->op!=TK_COLUMN || pExpr->iTable!=iParent ){ 
          return 0;
        }
      }
    }
  }




  pParse->zAuthContext = pSubitem->zName;
  sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
  pParse->zAuthContext = zSavedAuthContext;

  /* If the sub-query is a compound SELECT statement, then it must be
  ** a UNION ALL and the parent query must be of the form:

  **
  **     SELECT <expr-list> FROM (<sub-query>) <where-clause> 
  **
  ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
  ** creates N copies of the parent query without any ORDER BY, LIMIT or 
  ** OFFSET clauses and joins them to the left-hand-side of the original
  ** using UNION ALL operators. In this case N is the number of simple







|



|











|
<
<
<




>
>
>




|
|
>







2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649



2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670

  /* Restriction 17: If the sub-query is a compound SELECT, then it must
  ** use only the UNION ALL operator. And none of the simple select queries
  ** that make up the compound SELECT are allowed to be aggregate or distinct
  ** queries.
  */
  if( pSub->pPrior ){
    if( p->pPrior || isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
      return 0;
    }
    for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
      if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0
       || (pSub1->pPrior && pSub1->op!=TK_ALL) 
       || !pSub1->pSrc || pSub1->pSrc->nSrc!=1
      ){
        return 0;
      }
    }

    /* Restriction 18. */
    if( p->pOrderBy ){
      int ii;
      for(ii=0; ii<p->pOrderBy->nExpr; ii++){
        if( p->pOrderBy->a[ii].iCol==0 ) return 0;



      }
    }
  }

  /***** If we reach this point, flattening is permitted. *****/

  /* Authorize the subquery */
  pParse->zAuthContext = pSubitem->zName;
  sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
  pParse->zAuthContext = zSavedAuthContext;

  /* If the sub-query is a compound SELECT statement, then (by restrictions
  ** 17 and 18 above) it must be a UNION ALL and the parent query must 
  ** be of the form:
  **
  **     SELECT <expr-list> FROM (<sub-query>) <where-clause> 
  **
  ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
  ** creates N copies of the parent query without any ORDER BY, LIMIT or 
  ** OFFSET clauses and joins them to the left-hand-side of the original
  ** using UNION ALL operators. In this case N is the number of simple
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
    p->pSrc = pSrc;
    p->pLimit = pLimit;
    p->pOffset = pOffset;
    p->pRightmost = 0;
    pNew->pRightmost = 0;
  }

  /* If we reach this point, it means flattening is permitted for the
  ** iFrom-th entry of the FROM clause in the outer query.
  */
  pSub = pSub1 = pSubitem->pSelect;
  for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
    int nSubSrc = pSubSrc->nSrc;
    int jointype = 0;
    pSubSrc = pSub->pSrc;
    pSrc = pParent->pSrc;







|
|







2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
    p->pSrc = pSrc;
    p->pLimit = pLimit;
    p->pOffset = pOffset;
    p->pRightmost = 0;
    pNew->pRightmost = 0;
  }

  /* Begin flattening the iFrom-th entry of the FROM clause 
  ** in the outer query.
  */
  pSub = pSub1 = pSubitem->pSelect;
  for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
    int nSubSrc = pSubSrc->nSrc;
    int jointype = 0;
    pSubSrc = pSub->pSrc;
    pSrc = pParent->pSrc;
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
      substExpr(db, pParent->pWhere, iParent, pSub->pEList);
      pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere);
    }
  
    /* The flattened query is distinct if either the inner or the
    ** outer query is distinct. 
    */
    pParent->isDistinct = pParent->isDistinct || pSub->isDistinct;
  
    /*
    ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
    **
    ** One is tempted to try to add a and b to combine the limits.  But this
    ** does not work if either limit is negative.
    */







|







2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
      substExpr(db, pParent->pWhere, iParent, pSub->pEList);
      pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere);
    }
  
    /* The flattened query is distinct if either the inner or the
    ** outer query is distinct. 
    */
    pParent->selFlags |= pSub->selFlags & SF_Distinct;
  
    /*
    ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
    **
    ** One is tempted to try to add a and b to combine the limits.  But this
    ** does not work if either limit is negative.
    */
3290
3291
3292
3293
3294
3295
3296






























3297











3298


3299














































































































































































































































3300


































































3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
  }else if( sqlite3StrNICmp((char*)pExpr->token.z,"max",3)==0 ){
    return WHERE_ORDERBY_MAX;
  }
  return WHERE_ORDERBY_NORMAL;
}

/*






























** This routine resolves any names used in the result set of the











** supplied SELECT statement. If the SELECT statement being resolved


** is a sub-select, then pOuterNC is a pointer to the NameContext 














































































































































































































































** of the parent SELECT.


































































*/
int sqlite3SelectResolve(
  Parse *pParse,         /* The parser context */
  Select *p,             /* The SELECT statement being coded. */
  NameContext *pOuterNC  /* The outer name context. May be NULL. */
){
  ExprList *pEList;          /* Result set. */
  int i;                     /* For-loop variable used in multiple places */
  NameContext sNC;           /* Local name-context */
  ExprList *pGroupBy;        /* The group by clause */

  /* If this routine has run before, return immediately. */
  if( p->isResolved ){
    assert( !pOuterNC );
    return SQLITE_OK;
  }
  p->isResolved = 1;

  /* If there have already been errors, do nothing. */
  if( pParse->nErr>0 ){
    return SQLITE_ERROR;
  }

  /* Prepare the select statement. This call will allocate all cursors
  ** required to handle the tables and subqueries in the FROM clause.
  */
  if( prepSelectStmt(pParse, p) ){
    return SQLITE_ERROR;
  }

  /* Resolve the expressions in the LIMIT and OFFSET clauses. These
  ** are not allowed to refer to any names, so pass an empty NameContext.
  */
  memset(&sNC, 0, sizeof(sNC));
  sNC.pParse = pParse;
  if( sqlite3ExprResolveNames(&sNC, p->pLimit) ||
      sqlite3ExprResolveNames(&sNC, p->pOffset) ){
    return SQLITE_ERROR;
  }

  /* Set up the local name-context to pass to ExprResolveNames() to
  ** resolve the expression-list.
  */
  sNC.allowAgg = 1;
  sNC.pSrcList = p->pSrc;
  sNC.pNext = pOuterNC;

  /* Resolve names in the result set. */
  pEList = p->pEList;
  if( !pEList ) return SQLITE_ERROR;
  for(i=0; i<pEList->nExpr; i++){
    Expr *pX = pEList->a[i].pExpr;
    if( sqlite3ExprResolveNames(&sNC, pX) ){
      return SQLITE_ERROR;
    }
  }

  /* If there are no aggregate functions in the result-set, and no GROUP BY 
  ** expression, do not allow aggregates in any of the other expressions.
  */
  assert( !p->isAgg );
  pGroupBy = p->pGroupBy;
  if( pGroupBy || sNC.hasAgg ){
    p->isAgg = 1;
  }else{
    sNC.allowAgg = 0;
  }

  /* If a HAVING clause is present, then there must be a GROUP BY clause.
  */
  if( p->pHaving && !pGroupBy ){
    sqlite3ErrorMsg(pParse, "a GROUP BY clause is required before HAVING");
    return SQLITE_ERROR;
  }

  /* Add the expression list to the name-context before parsing the
  ** other expressions in the SELECT statement. This is so that
  ** expressions in the WHERE clause (etc.) can refer to expressions by
  ** aliases in the result set.
  **
  ** Minor point: If this is the case, then the expression will be
  ** re-evaluated for each reference to it.
  */
  sNC.pEList = p->pEList;
  if( sqlite3ExprResolveNames(&sNC, p->pWhere) ||
     sqlite3ExprResolveNames(&sNC, p->pHaving) ){
    return SQLITE_ERROR;
  }
  if( p->pPrior==0 ){
    if( processOrderGroupBy(pParse, p, p->pOrderBy, 1, &sNC.hasAgg) ){
      return SQLITE_ERROR;
    }
  }
  if( processOrderGroupBy(pParse, p, pGroupBy, 0, &sNC.hasAgg) ){
    return SQLITE_ERROR;
  }

  if( pParse->db->mallocFailed ){
    return SQLITE_NOMEM;
  }

  /* Make sure the GROUP BY clause does not contain aggregate functions.
  */
  if( pGroupBy ){
    struct ExprList_item *pItem;
  
    for(i=0, pItem=pGroupBy->a; i<pGroupBy->nExpr; i++, pItem++){
      if( ExprHasProperty(pItem->pExpr, EP_Agg) ){
        sqlite3ErrorMsg(pParse, "aggregate functions are not allowed in "
            "the GROUP BY clause");
        return SQLITE_ERROR;
      }
    }
  }

  /* If this is one SELECT of a compound, be sure to resolve names
  ** in the other SELECTs.
  */
  if( p->pPrior ){
    return sqlite3SelectResolve(pParse, p->pPrior, pOuterNC);
  }else{
    return SQLITE_OK;
  }
}

/*
** Reset the aggregate accumulator.
**
** The aggregate accumulator is a set of memory cells that hold
** intermediate results while calculating an aggregate.  This







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
|
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

|


|

<
<
<
<
|
<
<
<
|
<
|
|
<
|
<
<
<
<
<
<
|
<
<
|
<
<
<
<
<
<
<
<
<
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
<
<
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209




3210



3211

3212
3213

3214






3215


3216









3217

























































3218


3219






















3220
3221
3222
3223
3224
3225
3226
  }else if( sqlite3StrNICmp((char*)pExpr->token.z,"max",3)==0 ){
    return WHERE_ORDERBY_MAX;
  }
  return WHERE_ORDERBY_NORMAL;
}

/*
** This routine is a Walker callback for "expanding" a SELECT statement.
** "Expanding" means to do the following:
**
**    (1)  Make sure VDBE cursor numbers have been assigned to every
**         element of the FROM clause.
**
**    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that 
**         defines FROM clause.  When views appear in the FROM clause,
**         fill pTabList->a[].pSelect with a copy of the SELECT statement
**         that implements the view.  A copy is made of the view's SELECT
**         statement so that we can freely modify or delete that statement
**         without worrying about messing up the presistent representation
**         of the view.
**
**    (3)  Add terms to the WHERE clause to accomodate the NATURAL keyword
**         on joins and the ON and USING clause of joins.
**
**    (4)  Scan the list of columns in the result set (pEList) looking
**         for instances of the "*" operator or the TABLE.* operator.
**         If found, expand each "*" to be every column in every table
**         and TABLE.* to be every column in TABLE.
**
*/
static int selectExpander(Walker *pWalker, Select *p){
  Parse *pParse = pWalker->pParse;
  int i, j, k;
  SrcList *pTabList;
  ExprList *pEList;
  struct SrcList_item *pFrom;
  sqlite3 *db = pParse->db;

  if( db->mallocFailed  ){
    return WRC_Abort;
  }
  if( p->pSrc==0 || (p->selFlags & SF_Expanded)!=0 ){
    return WRC_Prune;
  }
  p->selFlags |= SF_Expanded;
  pTabList = p->pSrc;
  pEList = p->pEList;

  /* Make sure cursor numbers have been assigned to all entries in
  ** the FROM clause of the SELECT statement.
  */
  sqlite3SrcListAssignCursors(pParse, pTabList);

  /* Look up every table named in the FROM clause of the select.  If
  ** an entry of the FROM clause is a subquery instead of a table or view,
  ** then create a transient table structure to describe the subquery.
  */
  for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
    Table *pTab;
    if( pFrom->pTab!=0 ){
      /* This statement has already been prepared.  There is no need
      ** to go further. */
      assert( i==0 );
      return WRC_Prune;
    }
    if( pFrom->zName==0 ){
#ifndef SQLITE_OMIT_SUBQUERY
      Select *pSel = pFrom->pSelect;
      /* A sub-query in the FROM clause of a SELECT */
      assert( pSel!=0 );
      assert( pFrom->pTab==0 );
      sqlite3WalkSelect(pWalker, pSel);
      pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
      if( pTab==0 ) return WRC_Abort;
      pTab->db = db;
      pTab->nRef = 1;
      pTab->zName = sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pTab);
      while( pSel->pPrior ){ pSel = pSel->pPrior; }
      selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol);
      pTab->iPKey = -1;
      pTab->tabFlags |= TF_Ephemeral;
#endif
    }else{
      /* An ordinary table or view name in the FROM clause */
      assert( pFrom->pTab==0 );
      pFrom->pTab = pTab = 
        sqlite3LocateTable(pParse,0,pFrom->zName,pFrom->zDatabase);
      if( pTab==0 ) return WRC_Abort;
      pTab->nRef++;
#if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
      if( pTab->pSelect || IsVirtual(pTab) ){
        /* We reach here if the named table is a really a view */
        if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;

        /* If pFrom->pSelect!=0 it means we are dealing with a
        ** view within a view.  The SELECT structure has already been
        ** copied by the outer view so we can skip the copy step here
        ** in the inner view.
        */
        if( pFrom->pSelect==0 ){
          pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect);
          sqlite3WalkSelect(pWalker, pFrom->pSelect);
        }
      }
#endif
    }
  }

  /* Process NATURAL keywords, and ON and USING clauses of joins.
  */
  if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
    return WRC_Abort;
  }

  /* For every "*" that occurs in the column list, insert the names of
  ** all columns in all tables.  And for every TABLE.* insert the names
  ** of all columns in TABLE.  The parser inserted a special expression
  ** with the TK_ALL operator for each "*" that it found in the column list.
  ** The following code just has to locate the TK_ALL expressions and expand
  ** each one to the list of all columns in all tables.
  **
  ** The first loop just checks to see if there are any "*" operators
  ** that need expanding.
  */
  for(k=0; k<pEList->nExpr; k++){
    Expr *pE = pEList->a[k].pExpr;
    if( pE->op==TK_ALL ) break;
    if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL
         && pE->pLeft && pE->pLeft->op==TK_ID ) break;
  }
  if( k<pEList->nExpr ){
    /*
    ** If we get here it means the result set contains one or more "*"
    ** operators that need to be expanded.  Loop through each expression
    ** in the result set and expand them one by one.
    */
    struct ExprList_item *a = pEList->a;
    ExprList *pNew = 0;
    int flags = pParse->db->flags;
    int longNames = (flags & SQLITE_FullColNames)!=0
                      && (flags & SQLITE_ShortColNames)==0;

    for(k=0; k<pEList->nExpr; k++){
      Expr *pE = a[k].pExpr;
      if( pE->op!=TK_ALL &&
           (pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){
        /* This particular expression does not need to be expanded.
        */
        pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr, 0);
        if( pNew ){
          pNew->a[pNew->nExpr-1].zName = a[k].zName;
        }
        a[k].pExpr = 0;
        a[k].zName = 0;
      }else{
        /* This expression is a "*" or a "TABLE.*" and needs to be
        ** expanded. */
        int tableSeen = 0;      /* Set to 1 when TABLE matches */
        char *zTName;            /* text of name of TABLE */
        if( pE->op==TK_DOT && pE->pLeft ){
          zTName = sqlite3NameFromToken(db, &pE->pLeft->token);
        }else{
          zTName = 0;
        }
        for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
          Table *pTab = pFrom->pTab;
          char *zTabName = pFrom->zAlias;
          if( zTabName==0 || zTabName[0]==0 ){ 
            zTabName = pTab->zName;
          }
          if( db->mallocFailed ) break;
          if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
            continue;
          }
          tableSeen = 1;
          for(j=0; j<pTab->nCol; j++){
            Expr *pExpr, *pRight;
            char *zName = pTab->aCol[j].zName;

            /* If a column is marked as 'hidden' (currently only possible
            ** for virtual tables), do not include it in the expanded
            ** result-set list.
            */
            if( IsHiddenColumn(&pTab->aCol[j]) ){
              assert(IsVirtual(pTab));
              continue;
            }

            if( i>0 ){
              struct SrcList_item *pLeft = &pTabList->a[i-1];
              if( (pLeft[1].jointype & JT_NATURAL)!=0 &&
                        columnIndex(pLeft->pTab, zName)>=0 ){
                /* In a NATURAL join, omit the join columns from the 
                ** table on the right */
                continue;
              }
              if( sqlite3IdListIndex(pLeft[1].pUsing, zName)>=0 ){
                /* In a join with a USING clause, omit columns in the
                ** using clause from the table on the right. */
                continue;
              }
            }
            pRight = sqlite3PExpr(pParse, TK_ID, 0, 0, 0);
            if( pRight==0 ) break;
            setQuotedToken(pParse, &pRight->token, zName);
            if( longNames || pTabList->nSrc>1 ){
              Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, 0);
              pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
              if( pExpr==0 ) break;
              setQuotedToken(pParse, &pLeft->token, zTabName);
              setToken(&pExpr->span, 
                  sqlite3MPrintf(db, "%s.%s", zTabName, zName));
              pExpr->span.dyn = 1;
              pExpr->token.z = 0;
              pExpr->token.n = 0;
              pExpr->token.dyn = 0;
            }else{
              pExpr = pRight;
              pExpr->span = pExpr->token;
              pExpr->span.dyn = 0;
            }
            if( longNames ){
              pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pExpr->span);
            }else{
              pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pRight->token);
            }
          }
        }
        if( !tableSeen ){
          if( zTName ){
            sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
          }else{
            sqlite3ErrorMsg(pParse, "no tables specified");
          }
        }
        sqlite3DbFree(db, zTName);
      }
    }
    sqlite3ExprListDelete(db, pEList);
    p->pEList = pNew;
  }
#if SQLITE_MAX_COLUMN
  if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
    sqlite3ErrorMsg(pParse, "too many columns in result set");
  }
#endif
  return WRC_Continue;
}

/*
** No-op routine for the parse-tree walker.
**
** When this routine is the Walker.xExprCallback then expression trees
** are walked without any actions being taken at each node.  Presumably,
** when this routine is used for Walker.xExprCallback then 
** Walker.xSelectCallback is set to do something useful for every 
** subquery in the parser tree.
*/
static int exprWalkNoop(Walker *pWalker, Expr *pExpr){
  return WRC_Continue;
}

/*
** This routine "expands" a SELECT statement and all of its subqueries.
** For additional information on what it means to "expand" a SELECT
** statement, see the comment on the selectExpand worker callback above.
**
** Expanding a SELECT statement is the first step in processing a
** SELECT statement.  The SELECT statement must be expanded before
** name resolution is performed.
**
** If anything goes wrong, an error message is written into pParse.
** The calling function can detect the problem by looking at pParse->nErr
** and/or pParse->db->mallocFailed.
*/
static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
  Walker w;
  w.xSelectCallback = selectExpander;
  w.xExprCallback = exprWalkNoop;
  w.pParse = pParse;
  sqlite3WalkSelect(&w, pSelect);
}


#ifndef SQLITE_OMIT_SUBQUERY
/*
** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
** interface.
**
** For each FROM-clause subquery, add Column.zType and Column.zColl
** information to the Table structure that represents the result set
** of that subquery.
**
** The Table structure that represents the result set was constructed
** by selectExpander() but the type and collation information was omitted
** at that point because identifiers had not yet been resolved.  This
** routine is called after identifier resolution.
*/
static int selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
  Parse *pParse;
  int i;
  SrcList *pTabList;
  struct SrcList_item *pFrom;

  if( (p->selFlags & SF_Resolved)==0 ){
    /* If the ORDER BY clause of a compound SELECT contains a subquery,
    ** that subquery will not yet have been resolved. */
    return WRC_Prune;
  }
  if( (p->selFlags & SF_HasTypeInfo)==0 ){
    p->selFlags |= SF_HasTypeInfo;
    pParse = pWalker->pParse;
    pTabList = p->pSrc;
    for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
      Table *pTab = pFrom->pTab;
      if( pTab && (pTab->tabFlags & TF_Ephemeral)!=0 ){
        /* A sub-query in the FROM clause of a SELECT */
        Select *pSel = pFrom->pSelect;
        assert( pSel );
        while( pSel->pPrior ) pSel = pSel->pPrior;
        selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSel);
      }
    }
  }
  return WRC_Continue;
}
#endif


/*
** This routine adds datatype and collating sequence information to
** the Table structures of all FROM-clause subqueries in a
** SELECT statement.
**
** Use this routine after name resolution.
*/
static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
#ifndef SQLITE_OMIT_SUBQUERY
  Walker w;
  w.xSelectCallback = selectAddSubqueryTypeInfo;
  w.xExprCallback = exprWalkNoop;
  w.pParse = pParse;
  sqlite3WalkSelect(&w, pSelect);
#endif
}


/*
** This routine sets of a SELECT statement for processing.  The
** following is accomplished:
**
**     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
**     *  Ephemeral Table objects are created for all FROM-clause subqueries.
**     *  ON and USING clauses are shifted into WHERE statements
**     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
**     *  Identifiers in expression are matched to tables.
**
** This routine acts recursively on all subqueries within the SELECT.
*/
void sqlite3SelectPrep(
  Parse *pParse,         /* The parser context */
  Select *p,             /* The SELECT statement being coded. */
  NameContext *pOuterNC  /* Name context for container */
){




  sqlite3 *db;



  if( p==0 ) return;

  db = pParse->db;
  if( p->selFlags & SF_HasTypeInfo ) return;

  if( pParse->nErr || db->mallocFailed ) return;






  sqlite3SelectExpand(pParse, p);


  if( pParse->nErr || db->mallocFailed ) return;









  sqlite3ResolveSelectNames(pParse, p, pOuterNC);

























































  if( pParse->nErr || db->mallocFailed ) return;


  sqlite3SelectAddTypeInfo(pParse, p);






















}

/*
** Reset the aggregate accumulator.
**
** The aggregate accumulator is a set of memory cells that hold
** intermediate results while calculating an aggregate.  This
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540

3541
3542
3543



3544
3545

3546

3547
3548
3549
3550
3551
3552


3553
3554
3555
3556


3557
3558
3559

3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
  for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
    sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
  }
  pAggInfo->directMode = 0;
}

/*
** Generate code for the given SELECT statement.
**
** The results are distributed in various ways depending on the
** contents of the SelectDest structure pointed to by argument pDest
** as follows:
**
**     pDest->eDest    Result
**     ------------    -------------------------------------------

**     SRT_Callback    Invoke the callback for each row of the result.
**
**     SRT_Mem         Store first result in memory cell pDest->iParm



**
**     SRT_Set         Store results as keys of table pDest->iParm. 

**                     Apply the affinity pDest->affinity before storing them.

**
**     SRT_Union       Store results as a key in a temporary table pDest->iParm.
**
**     SRT_Except      Remove results from the temporary table pDest->iParm.
**
**     SRT_Table       Store results in temporary table pDest->iParm


**
**     SRT_EphemTab    Create an temporary table pDest->iParm and store
**                     the result there. The cursor is left open after
**                     returning.


**
**     SRT_Coroutine   Invoke a co-routine to compute a single row of 
**                     the result

**
**     SRT_Exists      Store a 1 in memory cell pDest->iParm if the result
**                     set is not empty.
**
**     SRT_Discard     Throw the results away.
**
** See the selectInnerLoop() function for a canonical listing of the 
** allowed values of eDest and their meanings.
**
** This routine returns the number of errors.  If any errors are
** encountered, then an appropriate error message is left in
** pParse->zErrMsg.
**
** This routine does NOT free the Select structure passed in.  The
** calling function needs to do that.
**
** The pParent, parentTab, and *pParentAgg fields are filled in if this
** SELECT is a subquery.  This routine may try to combine this SELECT
** with its parent to form a single flat query.  In so doing, it might
** change the parent query from a non-aggregate to an aggregate query.
** For that reason, the pParentAgg flag is passed as a pointer, so it
** can be changed.
**
** Example 1:   The meaning of the pParent parameter.
**
**    SELECT * FROM t1 JOIN (SELECT x, count(*) FROM t2) JOIN t3;
**    \                      \_______ subquery _______/        /
**     \                                                      /
**      \____________________ outer query ___________________/
**
** This routine is called for the outer query first.   For that call,
** pParent will be NULL.  During the processing of the outer query, this 
** routine is called recursively to handle the subquery.  For the recursive
** call, pParent will point to the outer query.  Because the subquery is
** the second element in a three-way join, the parentTab parameter will
** be 1 (the 2nd value of a 0-indexed array.)
*/
int sqlite3Select(
  Parse *pParse,         /* The parser context */
  Select *p,             /* The SELECT statement being coded. */
  SelectDest *pDest,     /* What to do with the query results */
  Select *pParent,       /* Another SELECT for which this is a sub-query */
  int parentTab,         /* Index in pParent->pSrc of this query */
  int *pParentAgg        /* True if pParent uses aggregate functions */
){
  int i, j;              /* Loop counters */
  WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
  Vdbe *v;               /* The virtual machine under construction */
  int isAgg;             /* True for select lists like "count(*)" */
  ExprList *pEList;      /* List of columns to extract. */
  SrcList *pTabList;     /* List of tables to select from */







|







>
|

|
>
>
>

|
>
|
>





|
>
>



|
>
>

|
|
>




|
|
|
<







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<




|
<
<
<







3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373

3374
3375
3376
3377
3378
3379
3380





















3381
3382
3383
3384
3385



3386
3387
3388
3389
3390
3391
3392
  for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
    sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
  }
  pAggInfo->directMode = 0;
}

/*
** Generate code for the SELECT statement given in the p argument.  
**
** The results are distributed in various ways depending on the
** contents of the SelectDest structure pointed to by argument pDest
** as follows:
**
**     pDest->eDest    Result
**     ------------    -------------------------------------------
**     SRT_Output      Generate a row of output (using the OP_ResultRow
**                     opcode) for each row in the result set.
**
**     SRT_Mem         Only valid if the result is a single column.
**                     Store the first column of the first result row
**                     in register pDest->iParm then abandon the rest
**                     of the query.  This destination implies "LIMIT 1".
**
**     SRT_Set         The result must be a single column.  Store each
**                     row of result as the key in table pDest->iParm. 
**                     Apply the affinity pDest->affinity before storing
**                     results.  Used to implement "IN (SELECT ...)".
**
**     SRT_Union       Store results as a key in a temporary table pDest->iParm.
**
**     SRT_Except      Remove results from the temporary table pDest->iParm.
**
**     SRT_Table       Store results in temporary table pDest->iParm.
**                     This is like SRT_EphemTab except that the table
**                     is assumed to already be open.
**
**     SRT_EphemTab    Create an temporary table pDest->iParm and store
**                     the result there. The cursor is left open after
**                     returning.  This is like SRT_Table except that
**                     this destination uses OP_OpenEphemeral to create
**                     the table first.
**
**     SRT_Coroutine   Generate a co-routine that returns a new row of
**                     results each time it is invoked.  The entry point
**                     of the co-routine is stored in register pDest->iParm.
**
**     SRT_Exists      Store a 1 in memory cell pDest->iParm if the result
**                     set is not empty.
**
**     SRT_Discard     Throw the results away.  This is used by SELECT
**                     statements within triggers whose only purpose is
**                     the side-effects of functions.

**
** This routine returns the number of errors.  If any errors are
** encountered, then an appropriate error message is left in
** pParse->zErrMsg.
**
** This routine does NOT free the Select structure passed in.  The
** calling function needs to do that.





















*/
int sqlite3Select(
  Parse *pParse,         /* The parser context */
  Select *p,             /* The SELECT statement being coded. */
  SelectDest *pDest      /* What to do with the query results */



){
  int i, j;              /* Loop counters */
  WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
  Vdbe *v;               /* The virtual machine under construction */
  int isAgg;             /* True for select lists like "count(*)" */
  ExprList *pEList;      /* List of columns to extract. */
  SrcList *pTabList;     /* List of tables to select from */
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641

3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
    p->pOrderBy = 0;

    /* In these cases the DISTINCT operator makes no difference to the
    ** results, so remove it if it were specified.
    */
    assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 
           pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard);
    p->isDistinct = 0;
  }
  if( sqlite3SelectResolve(pParse, p, 0) ){

    goto select_end;
  }
  p->pOrderBy = pOrderBy;


  /* Make local copies of the parameters for this query.
  */
  pTabList = p->pSrc;
  isAgg = p->isAgg;
  pEList = p->pEList;
  if( pEList==0 ) goto select_end;

  /* 
  ** Do not even attempt to generate any code if we have already seen
  ** errors before this routine starts.
  */







|

|
>








|







3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
    p->pOrderBy = 0;

    /* In these cases the DISTINCT operator makes no difference to the
    ** results, so remove it if it were specified.
    */
    assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 
           pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard);
    p->selFlags &= ~SF_Distinct;
  }
  sqlite3SelectPrep(pParse, p, 0);
  if( pParse->nErr ){
    goto select_end;
  }
  p->pOrderBy = pOrderBy;


  /* Make local copies of the parameters for this query.
  */
  pTabList = p->pSrc;
  isAgg = (p->selFlags & SF_Aggregate)!=0;
  pEList = p->pEList;
  if( pEList==0 ) goto select_end;

  /* 
  ** Do not even attempt to generate any code if we have already seen
  ** errors before this routine starts.
  */
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705

3706
3707
3708
3709

3710

3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
  */
#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
  for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
    struct SrcList_item *pItem = &pTabList->a[i];
    SelectDest dest;
    Select *pSub = pItem->pSelect;
    int isAggSub;
    char *zName = pItem->zName;

    if( pSub==0 || pItem->isPopulated ) continue;
    if( zName!=0 ){   /* An sql view */
      const char *zSavedAuthContext = pParse->zAuthContext;
      pParse->zAuthContext = zName;
      rc = sqlite3SelectResolve(pParse, pSub, 0);
      pParse->zAuthContext = zSavedAuthContext;
      if( rc ){
        goto select_end;
      }
    }

    /* Increment Parse.nHeight by the height of the largest expression
    ** tree refered to by this, the parent select. The child select
    ** may contain expression trees of at most
    ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
    ** more conservative than necessary, but much easier than enforcing
    ** an exact limit.
    */
    pParse->nHeight += sqlite3SelectExprHeight(p);

    /* Check to see if the subquery can be absorbed into the parent. */
    isAggSub = pSub->isAgg;
    if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){
      if( isAggSub ){
        p->isAgg = isAgg = 1;

      }
      i = -1;
    }else{
      sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);

      sqlite3Select(pParse, pSub, &dest, p, i, &isAgg);

    }
    if( pParse->nErr || db->mallocFailed ){
      goto select_end;
    }
    pParse->nHeight -= sqlite3SelectExprHeight(p);
    pTabList = p->pSrc;
    if( !IgnorableOrderby(pDest) ){
      pOrderBy = p->pOrderBy;
    }
  }
  pEList = p->pEList;
#endif
  pWhere = p->pWhere;
  pGroupBy = p->pGroupBy;
  pHaving = p->pHaving;
  isDistinct = p->isDistinct;

#ifndef SQLITE_OMIT_COMPOUND_SELECT
  /* If there is are a sequence of queries, do the earlier ones first.
  */
  if( p->pPrior ){
    if( p->pRightmost==0 ){
      Select *pLoop, *pRight = 0;







<


<
<
<
<
<
<
<
<
<











|


|
>




>
|
>















|







3455
3456
3457
3458
3459
3460
3461

3462
3463









3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
  */
#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
  for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
    struct SrcList_item *pItem = &pTabList->a[i];
    SelectDest dest;
    Select *pSub = pItem->pSelect;
    int isAggSub;


    if( pSub==0 || pItem->isPopulated ) continue;










    /* Increment Parse.nHeight by the height of the largest expression
    ** tree refered to by this, the parent select. The child select
    ** may contain expression trees of at most
    ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
    ** more conservative than necessary, but much easier than enforcing
    ** an exact limit.
    */
    pParse->nHeight += sqlite3SelectExprHeight(p);

    /* Check to see if the subquery can be absorbed into the parent. */
    isAggSub = (pSub->selFlags & SF_Aggregate)!=0;
    if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){
      if( isAggSub ){
        isAgg = 1;
        p->selFlags |= SF_Aggregate;
      }
      i = -1;
    }else{
      sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
      assert( pItem->isPopulated==0 );
      sqlite3Select(pParse, pSub, &dest);
      pItem->isPopulated = 1;
    }
    if( pParse->nErr || db->mallocFailed ){
      goto select_end;
    }
    pParse->nHeight -= sqlite3SelectExprHeight(p);
    pTabList = p->pSrc;
    if( !IgnorableOrderby(pDest) ){
      pOrderBy = p->pOrderBy;
    }
  }
  pEList = p->pEList;
#endif
  pWhere = p->pWhere;
  pGroupBy = p->pGroupBy;
  pHaving = p->pHaving;
  isDistinct = (p->selFlags & SF_Distinct)!=0;

#ifndef SQLITE_OMIT_COMPOUND_SELECT
  /* If there is are a sequence of queries, do the earlier ones first.
  */
  if( p->pPrior ){
    if( p->pRightmost==0 ){
      Select *pLoop, *pRight = 0;
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
#ifndef SQLITE_OMIT_SUBQUERY
  if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
    goto select_end;
  }
#endif

  /* If possible, rewrite the query to use GROUP BY instead of DISTINCT.
  ** GROUP BY may use an index, DISTINCT never does.
  */
  if( p->isDistinct && !p->isAgg && !p->pGroupBy ){
    p->pGroupBy = sqlite3ExprListDup(db, p->pEList);
    pGroupBy = p->pGroupBy;
    p->isDistinct = 0;
    isDistinct = 0;
  }

  /* If there is an ORDER BY clause, then this sorting
  ** index might end up being unused if the data can be 
  ** extracted in pre-sorted order.  If that is the case, then the
  ** OP_OpenEphemeral instruction will be changed to an OP_Noop once







|

|


|







3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
#ifndef SQLITE_OMIT_SUBQUERY
  if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
    goto select_end;
  }
#endif

  /* If possible, rewrite the query to use GROUP BY instead of DISTINCT.
  ** GROUP BY might use an index, DISTINCT never does.
  */
  if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct && !p->pGroupBy ){
    p->pGroupBy = sqlite3ExprListDup(db, p->pEList);
    pGroupBy = p->pGroupBy;
    p->selFlags &= ~SF_Distinct;
    isDistinct = 0;
  }

  /* If there is an ORDER BY clause, then this sorting
  ** index might end up being unused if the data can be 
  ** extracted in pre-sorted order.  If that is the case, then the
  ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
  /* If there is an ORDER BY clause, then we need to sort the results
  ** and send them to the callback one by one.
  */
  if( pOrderBy ){
    generateSortTail(pParse, p, v, pEList->nExpr, pDest);
  }

#ifndef SQLITE_OMIT_SUBQUERY
  /* If this was a subquery, we have now converted the subquery into a
  ** temporary table.  So set the SrcList_item.isPopulated flag to prevent
  ** this subquery from being evaluated again and to force the use of
  ** the temporary table.
  */
  if( pParent ){
    assert( pParent->pSrc->nSrc>parentTab );
    assert( pParent->pSrc->a[parentTab].pSelect==p );
    pParent->pSrc->a[parentTab].isPopulated = 1;
  }
#endif

  /* Jump here to skip this query
  */
  sqlite3VdbeResolveLabel(v, iEnd);

  /* The SELECT was successfully coded.   Set the return code to 0
  ** to indicate no errors.
  */
  rc = 0;

  /* Control jumps to here if an error is encountered above, or upon
  ** successful coding of the SELECT.
  */
select_end:

  /* Identify column names if we will be using them in a callback.  This
  ** step is skipped if the output is going to some other destination.
  */
  if( rc==SQLITE_OK && pDest->eDest==SRT_Callback ){
    generateColumnNames(pParse, pTabList, pEList);
  }

  sqlite3DbFree(db, sAggInfo.aCol);
  sqlite3DbFree(db, sAggInfo.aFunc);
  return rc;
}







<
<
<
<
<
<
<
<
<
<
<
<
<














|
<

|







3931
3932
3933
3934
3935
3936
3937













3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952

3953
3954
3955
3956
3957
3958
3959
3960
3961
  /* If there is an ORDER BY clause, then we need to sort the results
  ** and send them to the callback one by one.
  */
  if( pOrderBy ){
    generateSortTail(pParse, p, v, pEList->nExpr, pDest);
  }














  /* Jump here to skip this query
  */
  sqlite3VdbeResolveLabel(v, iEnd);

  /* The SELECT was successfully coded.   Set the return code to 0
  ** to indicate no errors.
  */
  rc = 0;

  /* Control jumps to here if an error is encountered above, or upon
  ** successful coding of the SELECT.
  */
select_end:

  /* Identify column names if results of the SELECT are to be output.

  */
  if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){
    generateColumnNames(pParse, pTabList, pEList);
  }

  sqlite3DbFree(db, sAggInfo.aCol);
  sqlite3DbFree(db, sAggInfo.aFunc);
  return rc;
}
Changes to src/sqliteInt.h.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/*
** 2001 September 15
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** Internal interface definitions for SQLite.
**
** @(#) $Id: sqliteInt.h,v 1.756 2008/08/20 14:49:25 danielk1977 Exp $
*/
#ifndef _SQLITEINT_H_
#define _SQLITEINT_H_

/*
** Include the configuration header output by 'configure' if we're using the
** autoconf-based build













|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/*
** 2001 September 15
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** Internal interface definitions for SQLite.
**
** @(#) $Id: sqliteInt.h,v 1.757 2008/08/20 16:35:10 drh Exp $
*/
#ifndef _SQLITEINT_H_
#define _SQLITEINT_H_

/*
** Include the configuration header output by 'configure' if we're using the
** autoconf-based build
204
205
206
207
208
209
210



211
212
213
214
215
216
217
**
** See also ticket #2741.
*/
#if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__) && SQLITE_THREADSAFE
#  define _XOPEN_SOURCE 500  /* Needed to enable pthread recursive mutexes */
#endif




#if defined(SQLITE_TCL) || defined(TCLSH)
# include <tcl.h>
#endif

/*
** Many people are failing to set -DNDEBUG=1 when compiling SQLite.
** Setting NDEBUG makes the code smaller and run faster.  So the following







>
>
>







204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
**
** See also ticket #2741.
*/
#if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__) && SQLITE_THREADSAFE
#  define _XOPEN_SOURCE 500  /* Needed to enable pthread recursive mutexes */
#endif

/*
** The TCL headers are only needed when compiling the TCL bindings.
*/
#if defined(SQLITE_TCL) || defined(TCLSH)
# include <tcl.h>
#endif

/*
** Many people are failing to set -DNDEBUG=1 when compiling SQLite.
** Setting NDEBUG makes the code smaller and run faster.  So the following
467
468
469
470
471
472
473

474
475
476
477
478
479
480
typedef struct Table Table;
typedef struct TableLock TableLock;
typedef struct Token Token;
typedef struct TriggerStack TriggerStack;
typedef struct TriggerStep TriggerStep;
typedef struct Trigger Trigger;
typedef struct UnpackedRecord UnpackedRecord;

typedef struct WhereInfo WhereInfo;
typedef struct WhereLevel WhereLevel;

/*
** Defer sourcing vdbe.h and btree.h until after the "u8" and 
** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque
** pointer types (i.e. FuncDef) defined above.







>







470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
typedef struct Table Table;
typedef struct TableLock TableLock;
typedef struct Token Token;
typedef struct TriggerStack TriggerStack;
typedef struct TriggerStep TriggerStep;
typedef struct Trigger Trigger;
typedef struct UnpackedRecord UnpackedRecord;
typedef struct Walker Walker;
typedef struct WhereInfo WhereInfo;
typedef struct WhereLevel WhereLevel;

/*
** Defer sourcing vdbe.h and btree.h until after the "u8" and 
** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque
** pointer types (i.e. FuncDef) defined above.
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
*/
struct Lookaside {
  u16 sz;                 /* Size of each buffer in bytes */
  u8 bEnabled;            /* True if use lookaside.  False to ignore it */
  u8 bMalloced;           /* True if pStart obtained from sqlite3_malloc() */
  int nOut;               /* Number of buffers currently checked out */
  int mxOut;              /* Highwater mark for nOut */
  LookasideSlot *pFree;   /* List if available buffers */
  void *pStart;           /* First byte of available memory space */
  void *pEnd;             /* First byte past end of available space */
};
struct LookasideSlot {
  LookasideSlot *pNext;    /* Next buffer in the list of free buffers */
};








|







580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
*/
struct Lookaside {
  u16 sz;                 /* Size of each buffer in bytes */
  u8 bEnabled;            /* True if use lookaside.  False to ignore it */
  u8 bMalloced;           /* True if pStart obtained from sqlite3_malloc() */
  int nOut;               /* Number of buffers currently checked out */
  int mxOut;              /* Highwater mark for nOut */
  LookasideSlot *pFree;   /* List of available buffers */
  void *pStart;           /* First byte of available memory space */
  void *pEnd;             /* First byte past end of available space */
};
struct LookasideSlot {
  LookasideSlot *pNext;    /* Next buffer in the list of free buffers */
};

757
758
759
760
761
762
763







764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
  FuncDef *pNext;      /* Next function with same name */
  void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */
  void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */
  void (*xFinalize)(sqlite3_context*);                /* Aggregate finializer */
  char *zName;         /* SQL name of the function. */
};








/*
** Each SQLite module (virtual table definition) is defined by an
** instance of the following structure, stored in the sqlite3.aModule
** hash table.
*/
struct Module {
  const sqlite3_module *pModule;       /* Callback pointers */
  const char *zName;                   /* Name passed to create_module() */
  void *pAux;                          /* pAux passed to create_module() */
  void (*xDestroy)(void *);            /* Module destructor function */
};

/*
** Possible values for FuncDef.flags
*/
#define SQLITE_FUNC_LIKE   0x01  /* Candidate for the LIKE optimization */
#define SQLITE_FUNC_CASE   0x02  /* Case-sensitive LIKE-type function */
#define SQLITE_FUNC_EPHEM  0x04  /* Ephermeral.  Delete with VDBE */

/*
** information about each column of an SQL table is held in an instance
** of this structure.
*/
struct Column {
  char *zName;     /* Name of this column */
  Expr *pDflt;     /* Default value of this column */







>
>
>
>
>
>
>












<
<
<
<
<
<
<







761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786







787
788
789
790
791
792
793
  FuncDef *pNext;      /* Next function with same name */
  void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */
  void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */
  void (*xFinalize)(sqlite3_context*);                /* Aggregate finializer */
  char *zName;         /* SQL name of the function. */
};

/*
** Possible values for FuncDef.flags
*/
#define SQLITE_FUNC_LIKE   0x01  /* Candidate for the LIKE optimization */
#define SQLITE_FUNC_CASE   0x02  /* Case-sensitive LIKE-type function */
#define SQLITE_FUNC_EPHEM  0x04  /* Ephermeral.  Delete with VDBE */

/*
** Each SQLite module (virtual table definition) is defined by an
** instance of the following structure, stored in the sqlite3.aModule
** hash table.
*/
struct Module {
  const sqlite3_module *pModule;       /* Callback pointers */
  const char *zName;                   /* Name passed to create_module() */
  void *pAux;                          /* pAux passed to create_module() */
  void (*xDestroy)(void *);            /* Module destructor function */
};








/*
** information about each column of an SQL table is held in an instance
** of this structure.
*/
struct Column {
  char *zName;     /* Name of this column */
  Expr *pDflt;     /* Default value of this column */
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
  u8 type;              /* One of the SQLITE_COLL_... values below */
  void *pUser;          /* First argument to xCmp() */
  int (*xCmp)(void*,int, const void*, int, const void*);
  void (*xDel)(void*);  /* Destructor for pUser */
};

/*
** Allowed values of CollSeq flags:
*/
#define SQLITE_COLL_BINARY  1  /* The default memcmp() collating sequence */
#define SQLITE_COLL_NOCASE  2  /* The built-in NOCASE collating sequence */
#define SQLITE_COLL_REVERSE 3  /* The built-in REVERSE collating sequence */
#define SQLITE_COLL_USER    0  /* Any other user-defined collating sequence */

/*
** A sort order can be either ASC or DESC.
*/
#define SQLITE_SO_ASC       0  /* Sort in ascending order */
#define SQLITE_SO_DESC      1  /* Sort in ascending order */

/*
** Column affinity types.
**
** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and
** 't' for SQLITE_AFF_TEXT.  But we can save a little space and improve
** the speed a little by number the values consecutively.  
**
** But rather than start with 0 or 1, we begin with 'a'.  That way,
** when multiple affinity types are concatenated into a string and
** used as the P4 operand, they will be more readable.
**
** Note also that the numeric types are grouped together so that testing
** for a numeric type is a single comparison.







|

















|







828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
  u8 type;              /* One of the SQLITE_COLL_... values below */
  void *pUser;          /* First argument to xCmp() */
  int (*xCmp)(void*,int, const void*, int, const void*);
  void (*xDel)(void*);  /* Destructor for pUser */
};

/*
** Allowed values of CollSeq.type:
*/
#define SQLITE_COLL_BINARY  1  /* The default memcmp() collating sequence */
#define SQLITE_COLL_NOCASE  2  /* The built-in NOCASE collating sequence */
#define SQLITE_COLL_REVERSE 3  /* The built-in REVERSE collating sequence */
#define SQLITE_COLL_USER    0  /* Any other user-defined collating sequence */

/*
** A sort order can be either ASC or DESC.
*/
#define SQLITE_SO_ASC       0  /* Sort in ascending order */
#define SQLITE_SO_DESC      1  /* Sort in ascending order */

/*
** Column affinity types.
**
** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and
** 't' for SQLITE_AFF_TEXT.  But we can save a little space and improve
** the speed a little by numbering the values consecutively.  
**
** But rather than start with 0 or 1, we begin with 'a'.  That way,
** when multiple affinity types are concatenated into a string and
** used as the P4 operand, they will be more readable.
**
** Note also that the numeric types are grouped together so that testing
** for a numeric type is a single comparison.
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911

912
913
914
915
916
917
918


919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942












943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
** pointer to an array of Column structures, one for each column.
**
** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of
** the column that is that key.   Otherwise Table.iPKey is negative.  Note
** that the datatype of the PRIMARY KEY must be INTEGER for this field to
** be set.  An INTEGER PRIMARY KEY is used as the rowid for each row of
** the table.  If a table has no INTEGER PRIMARY KEY, then a random rowid
** is generated for each row of the table.  Table.hasPrimKey is true if
** the table has any PRIMARY KEY, INTEGER or otherwise.
**
** Table.tnum is the page number for the root BTree page of the table in the
** database file.  If Table.iDb is the index of the database table backend
** in sqlite.aDb[].  0 is for the main database and 1 is for the file that
** holds temporary tables and indices.  If Table.isEphem
** is true, then the table is stored in a file that is automatically deleted
** when the VDBE cursor to the table is closed.  In this case Table.tnum 
** refers VDBE cursor number that holds the table open, not to the root
** page number.  Transient tables are used to hold the results of a
** sub-query that appears instead of a real table name in the FROM clause 
** of a SELECT statement.
*/
struct Table {
  sqlite3 *db;     /* Associated database connection.  Might be NULL. */
  char *zName;     /* Name of the table */

  int nCol;        /* Number of columns in this table */
  Column *aCol;    /* Information about each column */
  int iPKey;       /* If not less then 0, use aCol[iPKey] as the primary key */
  Index *pIndex;   /* List of SQL indexes on this table. */
  int tnum;        /* Root BTree node for this table (see note above) */
  Select *pSelect; /* NULL for tables.  Points to definition if a view. */
  int nRef;          /* Number of pointers to this Table */


  Trigger *pTrigger; /* List of SQL triggers on this table */
  FKey *pFKey;       /* Linked list of all foreign keys in this table */
  char *zColAff;     /* String defining the affinity of each column */
#ifndef SQLITE_OMIT_CHECK
  Expr *pCheck;      /* The AND of all CHECK constraints */
#endif
#ifndef SQLITE_OMIT_ALTERTABLE
  int addColOffset;  /* Offset in CREATE TABLE statement to add a new column */
#endif
  u8 readOnly;     /* True if this table should not be written by the user */
  u8 isEphem;      /* True if created using OP_OpenEphermeral */
  u8 hasPrimKey;   /* True if there exists a primary key */
  u8 keyConf;      /* What to do in case of uniqueness conflict on iPKey */
  u8 autoInc;      /* True if the integer primary key is autoincrement */
#ifndef SQLITE_OMIT_VIRTUALTABLE
  u8 isVirtual;             /* True if this is a virtual table */
  u8 isCommit;              /* True once the CREATE TABLE has been committed */
  Module *pMod;             /* Pointer to the implementation of the module */
  sqlite3_vtab *pVtab;      /* Pointer to the module instance */
  int nModuleArg;           /* Number of arguments to the module */
  char **azModuleArg;       /* Text of all module args. [0] is module name */
#endif
  Schema *pSchema;          /* Schema that contains this table */
};













/*
** Test to see whether or not a table is a virtual table.  This is
** done as a macro so that it will be optimized out when virtual
** table support is omitted from the build.
*/
#ifndef SQLITE_OMIT_VIRTUALTABLE
#  define IsVirtual(X)      ((X)->isVirtual)
#  define IsHiddenColumn(X) ((X)->isHidden)
#else
#  define IsVirtual(X)      0
#  define IsHiddenColumn(X) 0
#endif

/*







|





|
|







|
|
>
|
|
<
|
|
|
|
>
>
|
|
|

|


|

<
<
<
<
<

<
<
|
|
|
|

|

>
>
>
>
>
>
>
>
>
>
>
>







|







892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918

919
920
921
922
923
924
925
926
927
928
929
930
931
932
933





934


935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
** pointer to an array of Column structures, one for each column.
**
** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of
** the column that is that key.   Otherwise Table.iPKey is negative.  Note
** that the datatype of the PRIMARY KEY must be INTEGER for this field to
** be set.  An INTEGER PRIMARY KEY is used as the rowid for each row of
** the table.  If a table has no INTEGER PRIMARY KEY, then a random rowid
** is generated for each row of the table.  TF_HasPrimaryKey is set if
** the table has any PRIMARY KEY, INTEGER or otherwise.
**
** Table.tnum is the page number for the root BTree page of the table in the
** database file.  If Table.iDb is the index of the database table backend
** in sqlite.aDb[].  0 is for the main database and 1 is for the file that
** holds temporary tables and indices.  If TF_Ephemeral is set
** then the table is stored in a file that is automatically deleted
** when the VDBE cursor to the table is closed.  In this case Table.tnum 
** refers VDBE cursor number that holds the table open, not to the root
** page number.  Transient tables are used to hold the results of a
** sub-query that appears instead of a real table name in the FROM clause 
** of a SELECT statement.
*/
struct Table {
  sqlite3 *db;         /* Associated database connection.  Might be NULL. */
  char *zName;         /* Name of the table or view */
  int iPKey;           /* If not negative, use aCol[iPKey] as the primary key */
  int nCol;            /* Number of columns in this table */
  Column *aCol;        /* Information about each column */

  Index *pIndex;       /* List of SQL indexes on this table. */
  int tnum;            /* Root BTree node for this table (see note above) */
  Select *pSelect;     /* NULL for tables.  Points to definition if a view. */
  u16 nRef;            /* Number of pointers to this Table */
  u8 tabFlags;         /* Mask of TF_* values */
  u8 keyConf;          /* What to do in case of uniqueness conflict on iPKey */
  Trigger *pTrigger;   /* List of SQL triggers on this table */
  FKey *pFKey;         /* Linked list of all foreign keys in this table */
  char *zColAff;       /* String defining the affinity of each column */
#ifndef SQLITE_OMIT_CHECK
  Expr *pCheck;        /* The AND of all CHECK constraints */
#endif
#ifndef SQLITE_OMIT_ALTERTABLE
  int addColOffset;    /* Offset in CREATE TABLE stmt to add a new column */
#endif





#ifndef SQLITE_OMIT_VIRTUALTABLE


  Module *pMod;        /* Pointer to the implementation of the module */
  sqlite3_vtab *pVtab; /* Pointer to the module instance */
  int nModuleArg;      /* Number of arguments to the module */
  char **azModuleArg;  /* Text of all module args. [0] is module name */
#endif
  Schema *pSchema;     /* Schema that contains this table */
};

/*
** Allowed values for Tabe.tabFlags.
*/
#define TF_Readonly        0x01    /* Read-only system table */
#define TF_Ephemeral       0x02    /* An emphermal table */
#define TF_HasPrimaryKey   0x04    /* Table has a primary key */
#define TF_Autoincrement   0x08    /* Integer primary key is autoincrement */
#define TF_Virtual         0x10    /* Is a virtual table */
#define TF_NeedMetadata    0x20    /* aCol[].zType and aCol[].pColl missing */



/*
** Test to see whether or not a table is a virtual table.  This is
** done as a macro so that it will be optimized out when virtual
** table support is omitted from the build.
*/
#ifndef SQLITE_OMIT_VIRTUALTABLE
#  define IsVirtual(X)      (((X)->tabFlags & TF_Virtual)!=0)
#  define IsHiddenColumn(X) ((X)->isHidden)
#else
#  define IsVirtual(X)      0
#  define IsHiddenColumn(X) 0
#endif

/*
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
  int iTable, iColumn;   /* When op==TK_COLUMN, then this expr node means the
                         ** iColumn-th field of the iTable-th table. */
  AggInfo *pAggInfo;     /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */
  int iAgg;              /* Which entry in pAggInfo->aCol[] or ->aFunc[] */
  int iRightJoinTable;   /* If EP_FromJoin, the right table of the join */
  Select *pSelect;       /* When the expression is a sub-select.  Also the
                         ** right side of "<expr> IN (<select>)" */
  Table *pTab;           /* Table for OP_Column expressions. */
#if SQLITE_MAX_EXPR_DEPTH>0
  int nHeight;           /* Height of the tree headed by this node */
#endif
};

/*
** The following are the meanings of bits in the Expr.flags field.







|







1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
  int iTable, iColumn;   /* When op==TK_COLUMN, then this expr node means the
                         ** iColumn-th field of the iTable-th table. */
  AggInfo *pAggInfo;     /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */
  int iAgg;              /* Which entry in pAggInfo->aCol[] or ->aFunc[] */
  int iRightJoinTable;   /* If EP_FromJoin, the right table of the join */
  Select *pSelect;       /* When the expression is a sub-select.  Also the
                         ** right side of "<expr> IN (<select>)" */
  Table *pTab;           /* Table for TK_COLUMN expressions. */
#if SQLITE_MAX_EXPR_DEPTH>0
  int nHeight;           /* Height of the tree headed by this node */
#endif
};

/*
** The following are the meanings of bits in the Expr.flags field.
1283
1284
1285
1286
1287
1288
1289
1290
1291

1292
1293
1294
1295
1296
1297
1298
  int nExpr;             /* Number of expressions on the list */
  int nAlloc;            /* Number of entries allocated below */
  int iECursor;          /* VDBE Cursor associated with this ExprList */
  struct ExprList_item {
    Expr *pExpr;           /* The list of expressions */
    char *zName;           /* Token associated with this expression */
    u8 sortOrder;          /* 1 for DESC or 0 for ASC */
    u8 isAgg;              /* True if this is an aggregate like count(*) */
    u8 done;               /* A flag to indicate when processing is finished */

  } *a;                  /* One entry for each expression */
};

/*
** An instance of this structure can hold a simple list of identifiers,
** such as the list "a,b,c" in the following statements:
**







<

>







1294
1295
1296
1297
1298
1299
1300

1301
1302
1303
1304
1305
1306
1307
1308
1309
  int nExpr;             /* Number of expressions on the list */
  int nAlloc;            /* Number of entries allocated below */
  int iECursor;          /* VDBE Cursor associated with this ExprList */
  struct ExprList_item {
    Expr *pExpr;           /* The list of expressions */
    char *zName;           /* Token associated with this expression */
    u8 sortOrder;          /* 1 for DESC or 0 for ASC */

    u8 done;               /* A flag to indicate when processing is finished */
    u16 iCol;              /* For ORDER BY, column number in result set */
  } *a;                  /* One entry for each expression */
};

/*
** An instance of this structure can hold a simple list of identifiers,
** such as the list "a,b,c" in the following statements:
**
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510

1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525












1526

1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences
** for the result set.  The KeyInfo for addrOpenTran[2] contains collating
** sequences for the ORDER BY clause.
*/
struct Select {
  ExprList *pEList;      /* The fields of the result */
  u8 op;                 /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */
  u8 isDistinct;         /* True if the DISTINCT keyword is present */
  u8 isResolved;         /* True once sqlite3SelectResolve() has run. */
  u8 isAgg;              /* True if this is an aggregate query */
  u8 usesEphm;           /* True if uses an OpenEphemeral opcode */
  u8 disallowOrderBy;    /* Do not allow an ORDER BY to be attached if TRUE */
  char affinity;         /* MakeRecord with this affinity for SRT_Set */

  SrcList *pSrc;         /* The FROM clause */
  Expr *pWhere;          /* The WHERE clause */
  ExprList *pGroupBy;    /* The GROUP BY clause */
  Expr *pHaving;         /* The HAVING clause */
  ExprList *pOrderBy;    /* The ORDER BY clause */
  Select *pPrior;        /* Prior select in a compound select statement */
  Select *pNext;         /* Next select to the left in a compound */
  Select *pRightmost;    /* Right-most select in a compound select statement */
  Expr *pLimit;          /* LIMIT expression. NULL means not used. */
  Expr *pOffset;         /* OFFSET expression. NULL means not used. */
  int iLimit, iOffset;   /* Memory registers holding LIMIT & OFFSET counters */
  int addrOpenEphm[3];   /* OP_OpenEphem opcodes related to this select */
};

/*












** The results of a select can be distributed in several ways.

*/
#define SRT_Union        1  /* Store result as keys in an index */
#define SRT_Except       2  /* Remove result from a UNION index */
#define SRT_Exists       3  /* Store 1 if the result is not empty */
#define SRT_Discard      4  /* Do not save the results anywhere */

/* The ORDER BY clause is ignored for all of the above */
#define IgnorableOrderby(X) ((X->eDest)<=SRT_Discard)

#define SRT_Callback     5  /* Invoke a callback with each row of result */
#define SRT_Mem          6  /* Store result in a memory cell */
#define SRT_Set          7  /* Store results as keys in an index */
#define SRT_Table        8  /* Store result as data with an automatic rowid */
#define SRT_EphemTab     9  /* Create transient tab and store like SRT_Table */
#define SRT_Coroutine   10  /* Generate a single row of result */

/*







<
<
<
<
<

>















>
>
>
>
>
>
>
>
>
>
>
>
|
>









|







1509
1510
1511
1512
1513
1514
1515





1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences
** for the result set.  The KeyInfo for addrOpenTran[2] contains collating
** sequences for the ORDER BY clause.
*/
struct Select {
  ExprList *pEList;      /* The fields of the result */
  u8 op;                 /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */





  char affinity;         /* MakeRecord with this affinity for SRT_Set */
  u16 selFlags;          /* Various SF_* values */
  SrcList *pSrc;         /* The FROM clause */
  Expr *pWhere;          /* The WHERE clause */
  ExprList *pGroupBy;    /* The GROUP BY clause */
  Expr *pHaving;         /* The HAVING clause */
  ExprList *pOrderBy;    /* The ORDER BY clause */
  Select *pPrior;        /* Prior select in a compound select statement */
  Select *pNext;         /* Next select to the left in a compound */
  Select *pRightmost;    /* Right-most select in a compound select statement */
  Expr *pLimit;          /* LIMIT expression. NULL means not used. */
  Expr *pOffset;         /* OFFSET expression. NULL means not used. */
  int iLimit, iOffset;   /* Memory registers holding LIMIT & OFFSET counters */
  int addrOpenEphm[3];   /* OP_OpenEphem opcodes related to this select */
};

/*
** Allowed values for Select.selFlags.  The "SF" prefix stands for
** "Select Flag".
*/
#define SF_Distinct        0x0001  /* Output should be DISTINCT */
#define SF_Resolved        0x0002  /* Identifiers have been resolved */
#define SF_Aggregate       0x0004  /* Contains aggregate functions */
#define SF_UsesEphemeral   0x0008  /* Uses the OpenEphemeral opcode */
#define SF_Expanded        0x0010  /* sqlite3SelectExpand() called on this */
#define SF_HasTypeInfo     0x0020  /* FROM subqueries have Table metadata */


/*
** The results of a select can be distributed in several ways.  The
** "SRT" prefix means "SELECT Result Type".
*/
#define SRT_Union        1  /* Store result as keys in an index */
#define SRT_Except       2  /* Remove result from a UNION index */
#define SRT_Exists       3  /* Store 1 if the result is not empty */
#define SRT_Discard      4  /* Do not save the results anywhere */

/* The ORDER BY clause is ignored for all of the above */
#define IgnorableOrderby(X) ((X->eDest)<=SRT_Discard)

#define SRT_Output       5  /* Output each row of result */
#define SRT_Mem          6  /* Store result in a memory cell */
#define SRT_Set          7  /* Store results as keys in an index */
#define SRT_Table        8  /* Store result as data with an automatic rowid */
#define SRT_EphemTab     9  /* Create transient tab and store like SRT_Table */
#define SRT_Coroutine   10  /* Generate a single row of result */

/*
1858
1859
1860
1861
1862
1863
1864




























1865
1866
1867
1868
1869
1870
1871
  int isMallocInit;                 /* True after malloc is initialized */
  sqlite3_mutex *pInitMutex;        /* Mutex used by sqlite3_initialize() */
  int nRefInitMutex;                /* Number of users of pInitMutex */
  int nSmall;                       /* alloc size threshold used by mem6.c */
  int mxParserStack;                /* maximum depth of the parser stack */
};





























/*
** Assuming zIn points to the first byte of a UTF-8 character,
** advance zIn to point to the first byte of the next UTF-8 character.
*/
#define SQLITE_SKIP_UTF8(zIn) {                        \
  if( (*(zIn++))>=0xc0 ){                              \
    while( (*zIn & 0xc0)==0x80 ){ zIn++; }             \







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
  int isMallocInit;                 /* True after malloc is initialized */
  sqlite3_mutex *pInitMutex;        /* Mutex used by sqlite3_initialize() */
  int nRefInitMutex;                /* Number of users of pInitMutex */
  int nSmall;                       /* alloc size threshold used by mem6.c */
  int mxParserStack;                /* maximum depth of the parser stack */
};

/*
** Context pointer passed down through the tree-walk.
*/
struct Walker {
  int (*xExprCallback)(Walker*, Expr*);     /* Callback for expressions */
  int (*xSelectCallback)(Walker*,Select*);  /* Callback for SELECTs */
  Parse *pParse;                            /* Parser context.  */
  union {                                   /* Extra data for callback */
    NameContext *pNC;                          /* Naming context */
    int i;                                     /* Integer value */
  } u;
};

/* Forward declarations */
int sqlite3WalkExpr(Walker*, Expr*);
int sqlite3WalkExprList(Walker*, ExprList*);
int sqlite3WalkSelect(Walker*, Select*);
int sqlite3WalkSelectExpr(Walker*, Select*);
int sqlite3WalkSelectFrom(Walker*, Select*);

/*
** Return code from the parse-tree walking primitives and their
** callbacks.
*/
#define WRC_Continue    0
#define WRC_Prune       1
#define WRC_Abort       2

/*
** Assuming zIn points to the first byte of a UTF-8 character,
** advance zIn to point to the first byte of the next UTF-8 character.
*/
#define SQLITE_SKIP_UTF8(zIn) {                        \
  if( (*(zIn++))>=0xc0 ){                              \
    while( (*zIn & 0xc0)==0x80 ){ zIn++; }             \
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
void sqlite3ExprListDelete(sqlite3*, ExprList*);
int sqlite3Init(sqlite3*, char**);
int sqlite3InitCallback(void*, int, char**, char**);
void sqlite3Pragma(Parse*,Token*,Token*,Token*,int);
void sqlite3ResetInternalSchema(sqlite3*, int);
void sqlite3BeginParse(Parse*,int);
void sqlite3CommitInternalChanges(sqlite3*);
Table *sqlite3ResultSetOfSelect(Parse*,char*,Select*);
void sqlite3OpenMasterTable(Parse *, int);
void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int);
void sqlite3AddColumn(Parse*,Token*);
void sqlite3AddNotNull(Parse*, int);
void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int);
void sqlite3AddCheckConstraint(Parse*, Expr*);
void sqlite3AddColumnType(Parse*,Token*);







|







2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
void sqlite3ExprListDelete(sqlite3*, ExprList*);
int sqlite3Init(sqlite3*, char**);
int sqlite3InitCallback(void*, int, char**, char**);
void sqlite3Pragma(Parse*,Token*,Token*,Token*,int);
void sqlite3ResetInternalSchema(sqlite3*, int);
void sqlite3BeginParse(Parse*,int);
void sqlite3CommitInternalChanges(sqlite3*);
Table *sqlite3ResultSetOfSelect(Parse*,Select*);
void sqlite3OpenMasterTable(Parse *, int);
void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int);
void sqlite3AddColumn(Parse*,Token*);
void sqlite3AddNotNull(Parse*, int);
void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int);
void sqlite3AddCheckConstraint(Parse*, Expr*);
void sqlite3AddColumnType(Parse*,Token*);
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
void sqlite3SrcListShiftJoinType(SrcList*);
void sqlite3SrcListAssignCursors(Parse*, SrcList*);
void sqlite3IdListDelete(sqlite3*, IdList*);
void sqlite3SrcListDelete(sqlite3*, SrcList*);
void sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*,
                        Token*, int, int);
void sqlite3DropIndex(Parse*, SrcList*, int);
int sqlite3Select(Parse*, Select*, SelectDest*, Select*, int, int*);
Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*,
                         Expr*,ExprList*,int,Expr*,Expr*);
void sqlite3SelectDelete(sqlite3*, Select*);
Table *sqlite3SrcListLookup(Parse*, SrcList*);
int sqlite3IsReadOnly(Parse*, Table*, int);
void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int);
void sqlite3DeleteFrom(Parse*, SrcList*, Expr*);







|







2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
void sqlite3SrcListShiftJoinType(SrcList*);
void sqlite3SrcListAssignCursors(Parse*, SrcList*);
void sqlite3IdListDelete(sqlite3*, IdList*);
void sqlite3SrcListDelete(sqlite3*, SrcList*);
void sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*,
                        Token*, int, int);
void sqlite3DropIndex(Parse*, SrcList*, int);
int sqlite3Select(Parse*, Select*, SelectDest*);
Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*,
                         Expr*,ExprList*,int,Expr*,Expr*);
void sqlite3SelectDelete(sqlite3*, Select*);
Table *sqlite3SrcListLookup(Parse*, SrcList*);
int sqlite3IsReadOnly(Parse*, Table*, int);
void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int);
void sqlite3DeleteFrom(Parse*, SrcList*, Expr*);
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
Index *sqlite3FindIndex(sqlite3*,const char*, const char*);
void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*);
void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*);
void sqlite3Vacuum(Parse*);
int sqlite3RunVacuum(char**, sqlite3*);
char *sqlite3NameFromToken(sqlite3*, Token*);
int sqlite3ExprCompare(Expr*, Expr*);
int sqlite3ExprResolveNames(NameContext *, Expr *);
void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*);
void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*);
Vdbe *sqlite3GetVdbe(Parse*);
Expr *sqlite3CreateIdExpr(Parse *, const char*);
void sqlite3PrngSaveState(void);
void sqlite3PrngRestoreState(void);
void sqlite3PrngResetState(void);







<







2092
2093
2094
2095
2096
2097
2098

2099
2100
2101
2102
2103
2104
2105
Index *sqlite3FindIndex(sqlite3*,const char*, const char*);
void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*);
void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*);
void sqlite3Vacuum(Parse*);
int sqlite3RunVacuum(char**, sqlite3*);
char *sqlite3NameFromToken(sqlite3*, Token*);
int sqlite3ExprCompare(Expr*, Expr*);

void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*);
void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*);
Vdbe *sqlite3GetVdbe(Parse*);
Expr *sqlite3CreateIdExpr(Parse *, const char*);
void sqlite3PrngSaveState(void);
void sqlite3PrngRestoreState(void);
void sqlite3PrngResetState(void);
2226
2227
2228
2229
2230
2231
2232
2233




2234
2235
2236
2237
2238
2239
2240
void sqlite3Reindex(Parse*, Token*, Token*);
void sqlite3AlterFunctions(sqlite3*);
void sqlite3AlterRenameTable(Parse*, SrcList*, Token*);
int sqlite3GetToken(const unsigned char *, int *);
void sqlite3NestedParse(Parse*, const char*, ...);
void sqlite3ExpirePreparedStatements(sqlite3*);
void sqlite3CodeSubselect(Parse *, Expr *, int);
int sqlite3SelectResolve(Parse *, Select *, NameContext *);




void sqlite3ColumnDefault(Vdbe *, Table *, int);
void sqlite3AlterFinishAddColumn(Parse *, Token *);
void sqlite3AlterBeginAddColumn(Parse *, SrcList *);
CollSeq *sqlite3GetCollSeq(sqlite3*, CollSeq *, const char *, int);
char sqlite3AffinityType(const Token*);
void sqlite3Analyze(Parse*, Token*, Token*);
int sqlite3InvokeBusyHandler(BusyHandler*);







|
>
>
>
>







2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
void sqlite3Reindex(Parse*, Token*, Token*);
void sqlite3AlterFunctions(sqlite3*);
void sqlite3AlterRenameTable(Parse*, SrcList*, Token*);
int sqlite3GetToken(const unsigned char *, int *);
void sqlite3NestedParse(Parse*, const char*, ...);
void sqlite3ExpirePreparedStatements(sqlite3*);
void sqlite3CodeSubselect(Parse *, Expr *, int);
void sqlite3SelectPrep(Parse*, Select*, NameContext*);
int sqlite3ResolveExprNames(NameContext*, Expr*);
int sqlite3ResolveExprListNames(NameContext*, ExprList*);
void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*);
int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*);
void sqlite3ColumnDefault(Vdbe *, Table *, int);
void sqlite3AlterFinishAddColumn(Parse *, Token *);
void sqlite3AlterBeginAddColumn(Parse *, SrcList *);
CollSeq *sqlite3GetCollSeq(sqlite3*, CollSeq *, const char *, int);
char sqlite3AffinityType(const Token*);
void sqlite3Analyze(Parse*, Token*, Token*);
int sqlite3InvokeBusyHandler(BusyHandler*);
2348
2349
2350
2351
2352
2353
2354

2355
2356
2357

2358
2359
2360
2361
2362
2363
2364
#else
  #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile)
#endif

#if SQLITE_MAX_EXPR_DEPTH>0
  void sqlite3ExprSetHeight(Parse *pParse, Expr *p);
  int sqlite3SelectExprHeight(Select *);

#else
  #define sqlite3ExprSetHeight(x,y)
  #define sqlite3SelectExprHeight(x) 0

#endif

u32 sqlite3Get4byte(const u8*);
void sqlite3Put4byte(u8*, u32);

#ifdef SQLITE_SSE
#include "sseInt.h"







>



>







2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
#else
  #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile)
#endif

#if SQLITE_MAX_EXPR_DEPTH>0
  void sqlite3ExprSetHeight(Parse *pParse, Expr *p);
  int sqlite3SelectExprHeight(Select *);
  int sqlite3ExprCheckHeight(Parse*, int);
#else
  #define sqlite3ExprSetHeight(x,y)
  #define sqlite3SelectExprHeight(x) 0
  #define sqlite3ExprCheckHeight(x,y)
#endif

u32 sqlite3Get4byte(const u8*);
void sqlite3Put4byte(u8*, u32);

#ifdef SQLITE_SSE
#include "sseInt.h"
Changes to src/trigger.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
/*
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
**
**
** $Id: trigger.c,v 1.128 2008/07/28 19:34:54 drh Exp $
*/
#include "sqliteInt.h"

#ifndef SQLITE_OMIT_TRIGGER
/*
** Delete a linked list of TriggerStep structures.
*/












|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
/*
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
**
**
** $Id: trigger.c,v 1.129 2008/08/20 16:35:10 drh Exp $
*/
#include "sqliteInt.h"

#ifndef SQLITE_OMIT_TRIGGER
/*
** Delete a linked list of TriggerStep structures.
*/
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
    switch( pTriggerStep->op ){
      case TK_SELECT: {
        Select *ss = sqlite3SelectDup(db, pTriggerStep->pSelect);
        if( ss ){
          SelectDest dest;

          sqlite3SelectDestInit(&dest, SRT_Discard, 0);
          sqlite3SelectResolve(pParse, ss, 0);
          sqlite3Select(pParse, ss, &dest, 0, 0, 0);
          sqlite3SelectDelete(db, ss);
        }
        break;
      }
      case TK_UPDATE: {
        SrcList *pSrc;
        pSrc = targetSrcList(pParse, pTriggerStep);







<
|







675
676
677
678
679
680
681

682
683
684
685
686
687
688
689
    switch( pTriggerStep->op ){
      case TK_SELECT: {
        Select *ss = sqlite3SelectDup(db, pTriggerStep->pSelect);
        if( ss ){
          SelectDest dest;

          sqlite3SelectDestInit(&dest, SRT_Discard, 0);

          sqlite3Select(pParse, ss, &dest);
          sqlite3SelectDelete(db, ss);
        }
        break;
      }
      case TK_UPDATE: {
        SrcList *pSrc;
        pSrc = targetSrcList(pParse, pTriggerStep);
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
      trigStackEntry.ignoreJump = ignoreJump;
      pParse->trigStack = &trigStackEntry;
      sqlite3AuthContextPush(pParse, &sContext, p->name);

      /* code the WHEN clause */
      endTrigger = sqlite3VdbeMakeLabel(pParse->pVdbe);
      whenExpr = sqlite3ExprDup(db, p->pWhen);
      if( db->mallocFailed || sqlite3ExprResolveNames(&sNC, whenExpr) ){
        pParse->trigStack = trigStackEntry.pNext;
        sqlite3ExprDelete(db, whenExpr);
        return 1;
      }
      sqlite3ExprIfFalse(pParse, whenExpr, endTrigger, SQLITE_JUMPIFNULL);
      sqlite3ExprDelete(db, whenExpr);








|







824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
      trigStackEntry.ignoreJump = ignoreJump;
      pParse->trigStack = &trigStackEntry;
      sqlite3AuthContextPush(pParse, &sContext, p->name);

      /* code the WHEN clause */
      endTrigger = sqlite3VdbeMakeLabel(pParse->pVdbe);
      whenExpr = sqlite3ExprDup(db, p->pWhen);
      if( db->mallocFailed || sqlite3ResolveExprNames(&sNC, whenExpr) ){
        pParse->trigStack = trigStackEntry.pNext;
        sqlite3ExprDelete(db, whenExpr);
        return 1;
      }
      sqlite3ExprIfFalse(pParse, whenExpr, endTrigger, SQLITE_JUMPIFNULL);
      sqlite3ExprDelete(db, whenExpr);

Changes to src/update.c.
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that are called by the parser
** to handle UPDATE statements.
**
** $Id: update.c,v 1.181 2008/07/28 19:34:54 drh Exp $
*/
#include "sqliteInt.h"

#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Forward declaration */
static void updateVirtualTable(
  Parse *pParse,       /* The parsing context */







|







8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that are called by the parser
** to handle UPDATE statements.
**
** $Id: update.c,v 1.182 2008/08/20 16:35:10 drh Exp $
*/
#include "sqliteInt.h"

#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Forward declaration */
static void updateVirtualTable(
  Parse *pParse,       /* The parsing context */
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
  ** of the UPDATE statement.  Also find the column index
  ** for each column to be updated in the pChanges array.  For each
  ** column to be updated, make sure we have authorization to change
  ** that column.
  */
  chngRowid = 0;
  for(i=0; i<pChanges->nExpr; i++){
    if( sqlite3ExprResolveNames(&sNC, pChanges->a[i].pExpr) ){
      goto update_cleanup;
    }
    for(j=0; j<pTab->nCol; j++){
      if( sqlite3StrICmp(pTab->aCol[j].zName, pChanges->a[i].zName)==0 ){
        if( j==pTab->iPKey ){
          chngRowid = 1;
          pRowidExpr = pChanges->a[i].pExpr;







|







190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
  ** of the UPDATE statement.  Also find the column index
  ** for each column to be updated in the pChanges array.  For each
  ** column to be updated, make sure we have authorization to change
  ** that column.
  */
  chngRowid = 0;
  for(i=0; i<pChanges->nExpr; i++){
    if( sqlite3ResolveExprNames(&sNC, pChanges->a[i].pExpr) ){
      goto update_cleanup;
    }
    for(j=0; j<pTab->nCol; j++){
      if( sqlite3StrICmp(pTab->aCol[j].zName, pChanges->a[i].zName)==0 ){
        if( j==pTab->iPKey ){
          chngRowid = 1;
          pRowidExpr = pChanges->a[i].pExpr;
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
  if( isView ){
    sqlite3MaterializeView(pParse, pTab->pSelect, pWhere, iCur);
  }

  /* Resolve the column names in all the expressions in the
  ** WHERE clause.
  */
  if( sqlite3ExprResolveNames(&sNC, pWhere) ){
    goto update_cleanup;
  }

  /* Begin the database scan
  */
  sqlite3VdbeAddOp2(v, OP_Null, 0, regOldRowid);
  pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0,







|







331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
  if( isView ){
    sqlite3MaterializeView(pParse, pTab->pSelect, pWhere, iCur);
  }

  /* Resolve the column names in all the expressions in the
  ** WHERE clause.
  */
  if( sqlite3ResolveExprNames(&sNC, pWhere) ){
    goto update_cleanup;
  }

  /* Begin the database scan
  */
  sqlite3VdbeAddOp2(v, OP_Null, 0, regOldRowid);
  pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0,
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
  assert( v );
  ephemTab = pParse->nTab++;
  sqlite3VdbeAddOp2(v, OP_OpenEphemeral, ephemTab, pTab->nCol+1+(pRowid!=0));

  /* fill the ephemeral table 
  */
  sqlite3SelectDestInit(&dest, SRT_Table, ephemTab);
  sqlite3Select(pParse, pSelect, &dest, 0, 0, 0);

  /* Generate code to scan the ephemeral table and call VUpdate. */
  iReg = ++pParse->nMem;
  pParse->nMem += pTab->nCol+1;
  sqlite3VdbeAddOp2(v, OP_Rewind, ephemTab, 0);
  addr = sqlite3VdbeCurrentAddr(v);
  sqlite3VdbeAddOp3(v, OP_Column,  ephemTab, 0, iReg);







|







645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
  assert( v );
  ephemTab = pParse->nTab++;
  sqlite3VdbeAddOp2(v, OP_OpenEphemeral, ephemTab, pTab->nCol+1+(pRowid!=0));

  /* fill the ephemeral table 
  */
  sqlite3SelectDestInit(&dest, SRT_Table, ephemTab);
  sqlite3Select(pParse, pSelect, &dest);

  /* Generate code to scan the ephemeral table and call VUpdate. */
  iReg = ++pParse->nMem;
  pParse->nMem += pTab->nCol+1;
  sqlite3VdbeAddOp2(v, OP_Rewind, ephemTab, 0);
  addr = sqlite3VdbeCurrentAddr(v);
  sqlite3VdbeAddOp3(v, OP_Column,  ephemTab, 0, iReg);
Changes to src/vdbeaux.c.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
**
*************************************************************************
** This file contains code used for creating, destroying, and populating
** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)  Prior
** to version 2.8.7, all this code was combined into the vdbe.c source file.
** But that file was getting too big so this subroutines were split out.
**
** $Id: vdbeaux.c,v 1.407 2008/08/13 19:11:48 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>
#include "vdbeInt.h"










|







10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
**
*************************************************************************
** This file contains code used for creating, destroying, and populating
** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)  Prior
** to version 2.8.7, all this code was combined into the vdbe.c source file.
** But that file was getting too big so this subroutines were split out.
**
** $Id: vdbeaux.c,v 1.408 2008/08/20 16:35:10 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>
#include "vdbeInt.h"



2234
2235
2236
2237
2238
2239
2240

2241
2242
2243
2244
2245
2246
2247
    pMem->db = pKeyInfo->db;
    pMem->flags = 0;
    pMem->zMalloc = 0;
    d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
    pMem++;
    u++;
  }

  p->nField = u;
  return (void*)p;
}

/*
** This routine destroys a UnpackedRecord object
*/







>







2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
    pMem->db = pKeyInfo->db;
    pMem->flags = 0;
    pMem->zMalloc = 0;
    d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
    pMem++;
    u++;
  }
  assert( u<=pKeyInfo->nField + 1 );
  p->nField = u;
  return (void*)p;
}

/*
** This routine destroys a UnpackedRecord object
*/
Changes to src/vtab.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/*
** 2006 June 10
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains code used to help implement virtual tables.
**
** $Id: vtab.c,v 1.75 2008/08/20 14:49:25 danielk1977 Exp $
*/
#ifndef SQLITE_OMIT_VIRTUALTABLE
#include "sqliteInt.h"

static int createModule(
  sqlite3 *db,                    /* Database in which module is registered */
  const char *zName,              /* Name assigned to this module */













|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/*
** 2006 June 10
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains code used to help implement virtual tables.
**
** $Id: vtab.c,v 1.76 2008/08/20 16:35:10 drh Exp $
*/
#ifndef SQLITE_OMIT_VIRTUALTABLE
#include "sqliteInt.h"

static int createModule(
  sqlite3 *db,                    /* Database in which module is registered */
  const char *zName,              /* Name assigned to this module */
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
  if( pTable==0 || pParse->nErr ) return;
  assert( 0==pTable->pIndex );

  db = pParse->db;
  iDb = sqlite3SchemaToIndex(db, pTable->pSchema);
  assert( iDb>=0 );

  pTable->isVirtual = 1;
  pTable->nModuleArg = 0;
  addModuleArgument(db, pTable, sqlite3NameFromToken(db, pModuleName));
  addModuleArgument(db, pTable, sqlite3DbStrDup(db, db->aDb[iDb].zName));
  addModuleArgument(db, pTable, sqlite3DbStrDup(db, pTable->zName));
  pParse->sNameToken.n = pModuleName->z + pModuleName->n - pName1->z;

#ifndef SQLITE_OMIT_AUTHORIZATION







|







182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
  if( pTable==0 || pParse->nErr ) return;
  assert( 0==pTable->pIndex );

  db = pParse->db;
  iDb = sqlite3SchemaToIndex(db, pTable->pSchema);
  assert( iDb>=0 );

  pTable->tabFlags |= TF_Virtual;
  pTable->nModuleArg = 0;
  addModuleArgument(db, pTable, sqlite3NameFromToken(db, pModuleName));
  addModuleArgument(db, pTable, sqlite3DbStrDup(db, db->aDb[iDb].zName));
  addModuleArgument(db, pTable, sqlite3DbStrDup(db, pTable->zName));
  pParse->sNameToken.n = pModuleName->z + pModuleName->n - pName1->z;

#ifndef SQLITE_OMIT_AUTHORIZATION
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
**
** This call is a no-op if table pTab is not a virtual table.
*/
int sqlite3VtabCallConnect(Parse *pParse, Table *pTab){
  Module *pMod;
  int rc = SQLITE_OK;

  if( !pTab || !pTab->isVirtual || pTab->pVtab ){
    return SQLITE_OK;
  }

  pMod = pTab->pMod;
  if( !pMod ){
    const char *zModule = pTab->azModuleArg[0];
    sqlite3ErrorMsg(pParse, "no such module: %s", zModule);







|







438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
**
** This call is a no-op if table pTab is not a virtual table.
*/
int sqlite3VtabCallConnect(Parse *pParse, Table *pTab){
  Module *pMod;
  int rc = SQLITE_OK;

  if( !pTab || (pTab->tabFlags & TF_Virtual)==0 || pTab->pVtab ){
    return SQLITE_OK;
  }

  pMod = pTab->pMod;
  if( !pMod ){
    const char *zModule = pTab->azModuleArg[0];
    sqlite3ErrorMsg(pParse, "no such module: %s", zModule);
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
int sqlite3VtabCallCreate(sqlite3 *db, int iDb, const char *zTab, char **pzErr){
  int rc = SQLITE_OK;
  Table *pTab;
  Module *pMod;
  const char *zModule;

  pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zName);
  assert(pTab && pTab->isVirtual && !pTab->pVtab);
  pMod = pTab->pMod;
  zModule = pTab->azModuleArg[0];

  /* If the module has been registered and includes a Create method, 
  ** invoke it now. If the module has not been registered, return an 
  ** error. Otherwise, do nothing.
  */







|







499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
int sqlite3VtabCallCreate(sqlite3 *db, int iDb, const char *zTab, char **pzErr){
  int rc = SQLITE_OK;
  Table *pTab;
  Module *pMod;
  const char *zModule;

  pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zName);
  assert(pTab && (pTab->tabFlags & TF_Virtual)!=0 && !pTab->pVtab);
  pMod = pTab->pMod;
  zModule = pTab->azModuleArg[0];

  /* If the module has been registered and includes a Create method, 
  ** invoke it now. If the module has not been registered, return an 
  ** error. Otherwise, do nothing.
  */
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
  sqlite3_mutex_enter(db->mutex);
  pTab = db->pVTab;
  if( !pTab ){
    sqlite3Error(db, SQLITE_MISUSE, 0);
    sqlite3_mutex_leave(db->mutex);
    return SQLITE_MISUSE;
  }
  assert(pTab->isVirtual && pTab->nCol==0 && pTab->aCol==0);

  memset(&sParse, 0, sizeof(Parse));
  sParse.declareVtab = 1;
  sParse.db = db;

  if( 
      SQLITE_OK == sqlite3RunParser(&sParse, zCreateTable, &zErr) && 
      sParse.pNewTable && 
      !sParse.pNewTable->pSelect && 
      !sParse.pNewTable->isVirtual 
  ){
    pTab->aCol = sParse.pNewTable->aCol;
    pTab->nCol = sParse.pNewTable->nCol;
    sParse.pNewTable->nCol = 0;
    sParse.pNewTable->aCol = 0;
    db->pVTab = 0;
  } else {







|









|







540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
  sqlite3_mutex_enter(db->mutex);
  pTab = db->pVTab;
  if( !pTab ){
    sqlite3Error(db, SQLITE_MISUSE, 0);
    sqlite3_mutex_leave(db->mutex);
    return SQLITE_MISUSE;
  }
  assert((pTab->tabFlags & TF_Virtual)!=0 && pTab->nCol==0 && pTab->aCol==0);

  memset(&sParse, 0, sizeof(Parse));
  sParse.declareVtab = 1;
  sParse.db = db;

  if( 
      SQLITE_OK == sqlite3RunParser(&sParse, zCreateTable, &zErr) && 
      sParse.pNewTable && 
      !sParse.pNewTable->pSelect && 
      (sParse.pNewTable->tabFlags & TF_Virtual)==0
  ){
    pTab->aCol = sParse.pNewTable->aCol;
    pTab->nCol = sParse.pNewTable->nCol;
    sParse.pNewTable->nCol = 0;
    sParse.pNewTable->aCol = 0;
    db->pVTab = 0;
  } else {
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783


  /* Check to see the left operand is a column in a virtual table */
  if( pExpr==0 ) return pDef;
  if( pExpr->op!=TK_COLUMN ) return pDef;
  pTab = pExpr->pTab;
  if( pTab==0 ) return pDef;
  if( !pTab->isVirtual ) return pDef;
  pVtab = pTab->pVtab;
  assert( pVtab!=0 );
  assert( pVtab->pModule!=0 );
  pMod = (sqlite3_module *)pVtab->pModule;
  if( pMod->xFindFunction==0 ) return pDef;
 
  /* Call the xFindFunction method on the virtual table implementation







|







769
770
771
772
773
774
775
776
777
778
779
780
781
782
783


  /* Check to see the left operand is a column in a virtual table */
  if( pExpr==0 ) return pDef;
  if( pExpr->op!=TK_COLUMN ) return pDef;
  pTab = pExpr->pTab;
  if( pTab==0 ) return pDef;
  if( (pTab->tabFlags & TF_Virtual)==0 ) return pDef;
  pVtab = pTab->pVtab;
  assert( pVtab!=0 );
  assert( pVtab->pModule!=0 );
  pMod = (sqlite3_module *)pVtab->pModule;
  if( pMod->xFindFunction==0 ) return pDef;
 
  /* Call the xFindFunction method on the virtual table implementation
Added src/walker.c.












































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
/*
** 2008 August 16
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains routines used for walking the parser tree for
** an SQL statement.
**
** $Id: walker.c,v 1.1 2008/08/20 16:35:10 drh Exp $
*/
#include "sqliteInt.h"
#include <stdlib.h>
#include <string.h>


/*
** Walk an expression tree.  Invoke the callback once for each node
** of the expression, while decending.  (In other words, the callback
** is invoked before visiting children.)
**
** The return value from the callback should be one of the WRC_*
** constants to specify how to proceed with the walk.
**
**    WRC_Continue      Continue descending down the tree.
**
**    WRC_Prune         Do not descend into child nodes.  But allow
**                      the walk to continue with sibling nodes.
**
**    WRC_Abort         Do no more callbacks.  Unwind the stack and
**                      return the top-level walk call.
**
** The return value from this routine is WRC_Abort to abandon the tree walk
** and WRC_Continue to continue.
*/
int sqlite3WalkExpr(Walker *pWalker, Expr *pExpr){
  int rc;
  if( pExpr==0 ) return WRC_Continue;
  rc = pWalker->xExprCallback(pWalker, pExpr);
  if( rc==WRC_Continue ){
    if( sqlite3WalkExpr(pWalker, pExpr->pLeft) ) return WRC_Abort;
    if( sqlite3WalkExpr(pWalker, pExpr->pRight) ) return WRC_Abort;
    if( sqlite3WalkExprList(pWalker, pExpr->pList) ) return WRC_Abort;
    if( sqlite3WalkSelect(pWalker, pExpr->pSelect) ){
      return WRC_Abort;
    }
  }
  return rc & WRC_Abort;
}

/*
** Call sqlite3WalkExpr() for every expression in list p or until
** an abort request is seen.
*/
int sqlite3WalkExprList(Walker *pWalker, ExprList *p){
  int i, rc = WRC_Continue;
  struct ExprList_item *pItem;
  if( p ){
    for(i=p->nExpr, pItem=p->a; i>0; i--, pItem++){
      if( sqlite3WalkExpr(pWalker, pItem->pExpr) ) return WRC_Abort;
    }
  }
  return rc & WRC_Continue;
}

/*
** Walk all expressions associated with SELECT statement p.  Do
** not invoke the SELECT callback on p, but do (of course) invoke
** any expr callbacks and SELECT callbacks that come from subqueries.
** Return WRC_Abort or WRC_Continue.
*/
int sqlite3WalkSelectExpr(Walker *pWalker, Select *p){
  if( sqlite3WalkExprList(pWalker, p->pEList) ) return WRC_Abort;
  if( sqlite3WalkExpr(pWalker, p->pWhere) ) return WRC_Abort;
  if( sqlite3WalkExprList(pWalker, p->pGroupBy) ) return WRC_Abort;
  if( sqlite3WalkExpr(pWalker, p->pHaving) ) return WRC_Abort;
  if( sqlite3WalkExprList(pWalker, p->pOrderBy) ) return WRC_Abort;
  if( sqlite3WalkExpr(pWalker, p->pLimit) ) return WRC_Abort;
  if( sqlite3WalkExpr(pWalker, p->pOffset) ) return WRC_Abort;
  return WRC_Continue;
}

/*
** Walk the parse trees associated with all subqueries in the
** FROM clause of SELECT statement p.  Do not invoke the select
** callback on p, but do invoke it on each FROM clause subquery
** and on any subqueries further down in the tree.  Return 
** WRC_Abort or WRC_Continue;
*/
int sqlite3WalkSelectFrom(Walker *pWalker, Select *p){
  SrcList *pSrc;
  int i;
  struct SrcList_item *pItem;

  pSrc = p->pSrc;
  if( pSrc ){
    for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
      if( sqlite3WalkSelect(pWalker, pItem->pSelect) ){
        return WRC_Abort;
      }
    }
  }
  return WRC_Continue;
} 

/*
** Call sqlite3WalkExpr() for every expression in Select statement p.
** Invoke sqlite3WalkSelect() for subqueries in the FROM clause and
** on the compound select chain, p->pPrior.
**
** Return WRC_Continue under normal conditions.  Return WRC_Abort if
** there is an abort request.
**
** If the Walker does not have an xSelectCallback() then this routine
** is a no-op returning WRC_Continue.
*/
int sqlite3WalkSelect(Walker *pWalker, Select *p){
  int rc;
  if( p==0 || pWalker->xSelectCallback==0 ) return WRC_Continue;
  rc = WRC_Continue;
  while( p  ){
    rc = pWalker->xSelectCallback(pWalker, p);
    if( rc ) break;
    if( sqlite3WalkSelectExpr(pWalker, p) ) return WRC_Abort;
    if( sqlite3WalkSelectFrom(pWalker, p) ) return WRC_Abort;
    p = p->pPrior;
  }
  return rc & WRC_Abort;
}
Changes to src/where.c.
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
** This module contains C code that generates VDBE code used to process
** the WHERE clause of SQL statements.  This module is responsible for
** generating the code that loops through a table looking for applicable
** rows.  Indices are selected and used to speed the search when doing
** so is applicable.  Because this module is responsible for selecting
** indices, you might also think of this module as the "query optimizer".
**
** $Id: where.c,v 1.319 2008/08/01 17:37:41 danielk1977 Exp $
*/
#include "sqliteInt.h"

/*
** The number of bits in a Bitmask.  "BMS" means "BitMask Size".
*/
#define BMS  (sizeof(Bitmask)*8)







|







12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
** This module contains C code that generates VDBE code used to process
** the WHERE clause of SQL statements.  This module is responsible for
** generating the code that loops through a table looking for applicable
** rows.  Indices are selected and used to speed the search when doing
** so is applicable.  Because this module is responsible for selecting
** indices, you might also think of this module as the "query optimizer".
**
** $Id: where.c,v 1.320 2008/08/20 16:35:10 drh Exp $
*/
#include "sqliteInt.h"

/*
** The number of bits in a Bitmask.  "BMS" means "BitMask Size".
*/
#define BMS  (sizeof(Bitmask)*8)
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332

/*
** This routine walks (recursively) an expression tree and generates
** a bitmask indicating which tables are used in that expression
** tree.
**
** In order for this routine to work, the calling function must have
** previously invoked sqlite3ExprResolveNames() on the expression.  See
** the header comment on that routine for additional information.
** The sqlite3ExprResolveNames() routines looks for column names and
** sets their opcodes to TK_COLUMN and their Expr.iTable fields to
** the VDBE cursor number of the table.  This routine just has to
** translate the cursor numbers into bitmask values and OR all
** the bitmasks together.
*/
static Bitmask exprListTableUsage(ExprMaskSet*, ExprList*);
static Bitmask exprSelectTableUsage(ExprMaskSet*, Select*);







|

|







316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332

/*
** This routine walks (recursively) an expression tree and generates
** a bitmask indicating which tables are used in that expression
** tree.
**
** In order for this routine to work, the calling function must have
** previously invoked sqlite3ResolveExprNames() on the expression.  See
** the header comment on that routine for additional information.
** The sqlite3ResolveExprNames() routines looks for column names and
** sets their opcodes to TK_COLUMN and their Expr.iTable fields to
** the VDBE cursor number of the table.  This routine just has to
** translate the cursor numbers into bitmask values and OR all
** the bitmasks together.
*/
static Bitmask exprListTableUsage(ExprMaskSet*, ExprList*);
static Bitmask exprSelectTableUsage(ExprMaskSet*, Select*);
392
393
394
395
396
397
398
399
400
401
402


403
404
405
406
407
408
409
** side of the comparison, it remains associated with the same side after
** the commutation. So "Y collate NOCASE op X" becomes 
** "X collate NOCASE op Y". This is because any collation sequence on
** the left hand side of a comparison overrides any collation sequence 
** attached to the right. For the same reason the EP_ExpCollate flag
** is not commuted.
*/
static void exprCommute(Expr *pExpr){
  u16 expRight = (pExpr->pRight->flags & EP_ExpCollate);
  u16 expLeft = (pExpr->pLeft->flags & EP_ExpCollate);
  assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN );


  SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl);
  pExpr->pRight->flags = (pExpr->pRight->flags & ~EP_ExpCollate) | expLeft;
  pExpr->pLeft->flags = (pExpr->pLeft->flags & ~EP_ExpCollate) | expRight;
  SWAP(Expr*,pExpr->pRight,pExpr->pLeft);
  if( pExpr->op>=TK_GT ){
    assert( TK_LT==TK_GT+2 );
    assert( TK_GE==TK_LE+2 );







|



>
>







392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
** side of the comparison, it remains associated with the same side after
** the commutation. So "Y collate NOCASE op X" becomes 
** "X collate NOCASE op Y". This is because any collation sequence on
** the left hand side of a comparison overrides any collation sequence 
** attached to the right. For the same reason the EP_ExpCollate flag
** is not commuted.
*/
static void exprCommute(Parse *pParse, Expr *pExpr){
  u16 expRight = (pExpr->pRight->flags & EP_ExpCollate);
  u16 expLeft = (pExpr->pLeft->flags & EP_ExpCollate);
  assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN );
  pExpr->pRight->pColl = sqlite3ExprCollSeq(pParse, pExpr->pRight);
  pExpr->pLeft->pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
  SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl);
  pExpr->pRight->flags = (pExpr->pRight->flags & ~EP_ExpCollate) | expLeft;
  pExpr->pLeft->flags = (pExpr->pLeft->flags & ~EP_ExpCollate) | expRight;
  SWAP(Expr*,pExpr->pRight,pExpr->pLeft);
  if( pExpr->op>=TK_GT ){
    assert( TK_LT==TK_GT+2 );
    assert( TK_GE==TK_LE+2 );
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533

534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
** can be optimized using inequality constraints.  Return TRUE if it is
** so and false if not.
**
** In order for the operator to be optimizible, the RHS must be a string
** literal that does not begin with a wildcard.  
*/
static int isLikeOrGlob(
  sqlite3 *db,      /* The database */
  Expr *pExpr,      /* Test this expression */
  int *pnPattern,   /* Number of non-wildcard prefix characters */
  int *pisComplete, /* True if the only wildcard is % in the last character */
  int *pnoCase      /* True if uppercase is equivalent to lowercase */
){
  const char *z;
  Expr *pRight, *pLeft;
  ExprList *pList;
  int c, cnt;
  char wc[3];
  CollSeq *pColl;


  if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){
    return 0;
  }
#ifdef SQLITE_EBCDIC
  if( *pnoCase ) return 0;
#endif
  pList = pExpr->pList;
  pRight = pList->a[0].pExpr;
  if( pRight->op!=TK_STRING
   && (pRight->op!=TK_REGISTER || pRight->iColumn!=TK_STRING) ){
    return 0;
  }
  pLeft = pList->a[1].pExpr;
  if( pLeft->op!=TK_COLUMN ){
    return 0;
  }
  pColl = pLeft->pColl;
  assert( pColl!=0 || pLeft->iColumn==-1 );
  if( pColl==0 ){
    /* No collation is defined for the ROWID.  Use the default. */
    pColl = db->pDfltColl;
  }
  if( (pColl->type!=SQLITE_COLL_BINARY || *pnoCase) &&
      (pColl->type!=SQLITE_COLL_NOCASE || !*pnoCase) ){







|











>

















|







517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
** can be optimized using inequality constraints.  Return TRUE if it is
** so and false if not.
**
** In order for the operator to be optimizible, the RHS must be a string
** literal that does not begin with a wildcard.  
*/
static int isLikeOrGlob(
  Parse *pParse,    /* Parsing and code generating context */
  Expr *pExpr,      /* Test this expression */
  int *pnPattern,   /* Number of non-wildcard prefix characters */
  int *pisComplete, /* True if the only wildcard is % in the last character */
  int *pnoCase      /* True if uppercase is equivalent to lowercase */
){
  const char *z;
  Expr *pRight, *pLeft;
  ExprList *pList;
  int c, cnt;
  char wc[3];
  CollSeq *pColl;
  sqlite3 *db = pParse->db;

  if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){
    return 0;
  }
#ifdef SQLITE_EBCDIC
  if( *pnoCase ) return 0;
#endif
  pList = pExpr->pList;
  pRight = pList->a[0].pExpr;
  if( pRight->op!=TK_STRING
   && (pRight->op!=TK_REGISTER || pRight->iColumn!=TK_STRING) ){
    return 0;
  }
  pLeft = pList->a[1].pExpr;
  if( pLeft->op!=TK_COLUMN ){
    return 0;
  }
  pColl = sqlite3ExprCollSeq(pParse, pLeft);
  assert( pColl!=0 || pLeft->iColumn==-1 );
  if( pColl==0 ){
    /* No collation is defined for the ROWID.  Use the default. */
    pColl = db->pDfltColl;
  }
  if( (pColl->type!=SQLITE_COLL_BINARY || *pnoCase) &&
      (pColl->type!=SQLITE_COLL_NOCASE || !*pnoCase) ){
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
        pTerm = &pWC->a[idxTerm];
        pTerm->nChild = 1;
        pTerm->flags |= TERM_COPIED;
      }else{
        pDup = pExpr;
        pNew = pTerm;
      }
      exprCommute(pDup);
      pLeft = pDup->pLeft;
      pNew->leftCursor = pLeft->iTable;
      pNew->leftColumn = pLeft->iColumn;
      pNew->prereqRight = prereqLeft;
      pNew->prereqAll = prereqAll;
      pNew->eOperator = operatorMask(pDup->op);
    }







|







787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
        pTerm = &pWC->a[idxTerm];
        pTerm->nChild = 1;
        pTerm->flags |= TERM_COPIED;
      }else{
        pDup = pExpr;
        pNew = pTerm;
      }
      exprCommute(pParse, pDup);
      pLeft = pDup->pLeft;
      pNew->leftCursor = pLeft->iTable;
      pNew->leftColumn = pLeft->iColumn;
      pNew->prereqRight = prereqLeft;
      pNew->prereqAll = prereqAll;
      pNew->eOperator = operatorMask(pDup->op);
    }
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
  ** A like pattern of the form "x LIKE 'abc%'" is changed into constraints
  **
  **          x>='abc' AND x<'abd' AND x LIKE 'abc%'
  **
  ** The last character of the prefix "abc" is incremented to form the
  ** termination condition "abd".
  */
  if( isLikeOrGlob(db, pExpr, &nPattern, &isComplete, &noCase) ){
    Expr *pLeft, *pRight;
    Expr *pStr1, *pStr2;
    Expr *pNewExpr1, *pNewExpr2;
    int idxNew1, idxNew2;

    pLeft = pExpr->pList->a[1].pExpr;
    pRight = pExpr->pList->a[0].pExpr;







|







908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
  ** A like pattern of the form "x LIKE 'abc%'" is changed into constraints
  **
  **          x>='abc' AND x<'abd' AND x LIKE 'abc%'
  **
  ** The last character of the prefix "abc" is incremented to form the
  ** termination condition "abd".
  */
  if( isLikeOrGlob(pParse, pExpr, &nPattern, &isComplete, &noCase) ){
    Expr *pLeft, *pRight;
    Expr *pStr1, *pStr2;
    Expr *pNewExpr1, *pNewExpr2;
    int idxNew1, idxNew2;

    pLeft = pExpr->pList->a[1].pExpr;
    pRight = pExpr->pList->a[0].pExpr;
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
      }
      sqlite3VdbeAddOp4(v, OP_Explain, i, pLevel->iFrom, 0, zMsg, P4_DYNAMIC);
    }
#endif /* SQLITE_OMIT_EXPLAIN */
    pTabItem = &pTabList->a[pLevel->iFrom];
    pTab = pTabItem->pTab;
    iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
    if( pTab->isEphem || pTab->pSelect ) continue;
#ifndef SQLITE_OMIT_VIRTUALTABLE
    if( pLevel->pBestIdx ){
      int iCur = pTabItem->iCursor;
      sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0,
                        (const char*)pTab->pVtab, P4_VTAB);
    }else
#endif







|







2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
      }
      sqlite3VdbeAddOp4(v, OP_Explain, i, pLevel->iFrom, 0, zMsg, P4_DYNAMIC);
    }
#endif /* SQLITE_OMIT_EXPLAIN */
    pTabItem = &pTabList->a[pLevel->iFrom];
    pTab = pTabItem->pTab;
    iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
    if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ) continue;
#ifndef SQLITE_OMIT_VIRTUALTABLE
    if( pLevel->pBestIdx ){
      int iCur = pTabItem->iCursor;
      sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0,
                        (const char*)pTab->pVtab, P4_VTAB);
    }else
#endif
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847

  /* Close all of the cursors that were opened by sqlite3WhereBegin.
  */
  for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
    struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
    Table *pTab = pTabItem->pTab;
    assert( pTab!=0 );
    if( pTab->isEphem || pTab->pSelect ) continue;
    if( !pWInfo->okOnePass && (pLevel->flags & WHERE_IDX_ONLY)==0 ){
      sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor);
    }
    if( pLevel->pIdx!=0 ){
      sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur);
    }








|







2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850

  /* Close all of the cursors that were opened by sqlite3WhereBegin.
  */
  for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
    struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
    Table *pTab = pTabItem->pTab;
    assert( pTab!=0 );
    if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ) continue;
    if( !pWInfo->okOnePass && (pLevel->flags & WHERE_IDX_ONLY)==0 ){
      sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor);
    }
    if( pLevel->pIdx!=0 ){
      sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur);
    }

Changes to test/collate2.test.
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this script is page cache subsystem.
#
# $Id: collate2.test,v 1.5 2007/02/01 23:02:46 drh Exp $

set testdir [file dirname $argv0]
source $testdir/tester.tcl

#
# Tests are organised as follows:
#







|







8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this script is page cache subsystem.
#
# $Id: collate2.test,v 1.6 2008/08/20 16:35:10 drh Exp $

set testdir [file dirname $argv0]
source $testdir/tester.tcl

#
# Tests are organised as follows:
#
131
132
133
134
135
136
137




















138
139
140
141
142
143
144
  }
} {ab aB Ab AB ba bA Ba BA bb bB Bb BB}
do_test collate2-1.2.3 {
  execsql {
    SELECT b FROM collate2t1 WHERE c COLLATE nocase > 'aa'
     ORDER BY 1, oid;
  }




















} {ab aB Ab AB ba bA Ba BA bb bB Bb BB}
do_test collate2-1.3 {
  execsql {
    SELECT c FROM collate2t1 WHERE c > 'aa' ORDER BY 1;
  }
} {ba Ab Bb ab bb}
do_test collate2-1.3.1 {







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
  }
} {ab aB Ab AB ba bA Ba BA bb bB Bb BB}
do_test collate2-1.2.3 {
  execsql {
    SELECT b FROM collate2t1 WHERE c COLLATE nocase > 'aa'
     ORDER BY 1, oid;
  }
} {ab aB Ab AB ba bA Ba BA bb bB Bb BB}
do_test collate2-1.2.4 {
  execsql {
    SELECT b FROM collate2t1 WHERE b > 'aa' ORDER BY +b;
  }
} {ab aB Ab AB ba bA Ba BA bb bB Bb BB}
do_test collate2-1.2.5 {
  execsql {
    SELECT b FROM collate2t1 WHERE a COLLATE nocase > 'aa' ORDER BY +b;
  }
} {ab aB Ab AB ba bA Ba BA bb bB Bb BB}
do_test collate2-1.2.6 {
  execsql {
    SELECT b FROM collate2t1 WHERE b COLLATE nocase > 'aa' ORDER BY +b;
  }
} {ab aB Ab AB ba bA Ba BA bb bB Bb BB}
do_test collate2-1.2.7 {
  execsql {
    SELECT b FROM collate2t1 WHERE c COLLATE nocase > 'aa' ORDER BY +b;
  }
} {ab aB Ab AB ba bA Ba BA bb bB Bb BB}
do_test collate2-1.3 {
  execsql {
    SELECT c FROM collate2t1 WHERE c > 'aa' ORDER BY 1;
  }
} {ba Ab Bb ab bb}
do_test collate2-1.3.1 {
164
165
166
167
168
169
170





171
172
173
174
175
176
177
    SELECT a FROM collate2t1 WHERE a < 'aa' ORDER BY 1;
  }
} {AA AB Aa Ab BA BB Ba Bb aA aB}
do_test collate2-1.5 {
  execsql {
    SELECT b FROM collate2t1 WHERE b < 'aa' ORDER BY 1, oid;
  }





} {}
do_test collate2-1.6 {
  execsql {
    SELECT c FROM collate2t1 WHERE c < 'aa' ORDER BY 1;
  }
} {AA BA aA bA AB BB aB bB Aa Ba}
do_test collate2-1.7 {







>
>
>
>
>







184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
    SELECT a FROM collate2t1 WHERE a < 'aa' ORDER BY 1;
  }
} {AA AB Aa Ab BA BB Ba Bb aA aB}
do_test collate2-1.5 {
  execsql {
    SELECT b FROM collate2t1 WHERE b < 'aa' ORDER BY 1, oid;
  }
} {}
do_test collate2-1.5.1 {
  execsql {
    SELECT b FROM collate2t1 WHERE b < 'aa' ORDER BY +b;
  }
} {}
do_test collate2-1.6 {
  execsql {
    SELECT c FROM collate2t1 WHERE c < 'aa' ORDER BY 1;
  }
} {AA BA aA bA AB BB aB bB Aa Ba}
do_test collate2-1.7 {
224
225
226
227
228
229
230





231
232
233
234
235
236
237
    SELECT a FROM collate2t1 WHERE a BETWEEN 'Aa' AND 'Bb' ORDER BY 1;
  }
} {Aa Ab BA BB Ba Bb}
do_test collate2-1.17 {
  execsql {
    SELECT b FROM collate2t1 WHERE b BETWEEN 'Aa' AND 'Bb' ORDER BY 1, oid;
  }





} {aa aA Aa AA ab aB Ab AB ba bA Ba BA bb bB Bb BB}
do_test collate2-1.18 {
  execsql {
    SELECT c FROM collate2t1 WHERE c BETWEEN 'Aa' AND 'Bb' ORDER BY 1;
  }
} {Aa Ba aa ba Ab Bb}
do_test collate2-1.19 {







>
>
>
>
>







249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
    SELECT a FROM collate2t1 WHERE a BETWEEN 'Aa' AND 'Bb' ORDER BY 1;
  }
} {Aa Ab BA BB Ba Bb}
do_test collate2-1.17 {
  execsql {
    SELECT b FROM collate2t1 WHERE b BETWEEN 'Aa' AND 'Bb' ORDER BY 1, oid;
  }
} {aa aA Aa AA ab aB Ab AB ba bA Ba BA bb bB Bb BB}
do_test collate2-1.17.1 {
  execsql {
    SELECT b FROM collate2t1 WHERE b BETWEEN 'Aa' AND 'Bb' ORDER BY +b;
  }
} {aa aA Aa AA ab aB Ab AB ba bA Ba BA bb bB Bb BB}
do_test collate2-1.18 {
  execsql {
    SELECT c FROM collate2t1 WHERE c BETWEEN 'Aa' AND 'Bb' ORDER BY 1;
  }
} {Aa Ba aa ba Ab Bb}
do_test collate2-1.19 {
Changes to test/collate3.test.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# 2001 September 15
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this script is page cache subsystem.
#
# $Id: collate3.test,v 1.12 2008/07/12 14:52:20 drh Exp $

set testdir [file dirname $argv0]
source $testdir/tester.tcl

#
# Tests are organised as follows:
#













|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# 2001 September 15
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this script is page cache subsystem.
#
# $Id: collate3.test,v 1.13 2008/08/20 16:35:10 drh Exp $

set testdir [file dirname $argv0]
source $testdir/tester.tcl

#
# Tests are organised as follows:
#
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
do_test collate3-4.7 {
  db close
  sqlite3 db test.db
  catchsql {
    SELECT * FROM collate3t1 ORDER BY a COLLATE user_defined;
  }
} {1 {no such collation sequence: user_defined}}
do_test collate3-4.8 {
  db collate user_defined "string compare"
  catchsql {
    SELECT * FROM collate3t1 ORDER BY a COLLATE user_defined;
  }
} {0 {hello {}}}
do_test collate3-4.8 {
  db close
  lindex [catch {
    sqlite3 db test.db
  }] 0
} {0}
do_test collate3-4.8 {
  execsql {
    DROP TABLE collate3t1;
  }
} {}

# Compare strings as numbers.
proc numeric_compare {lhs rhs} {







|





|





|







288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
do_test collate3-4.7 {
  db close
  sqlite3 db test.db
  catchsql {
    SELECT * FROM collate3t1 ORDER BY a COLLATE user_defined;
  }
} {1 {no such collation sequence: user_defined}}
do_test collate3-4.8.1 {
  db collate user_defined "string compare"
  catchsql {
    SELECT * FROM collate3t1 ORDER BY a COLLATE user_defined;
  }
} {0 {hello {}}}
do_test collate3-4.8.2 {
  db close
  lindex [catch {
    sqlite3 db test.db
  }] 0
} {0}
do_test collate3-4.8.3 {
  execsql {
    DROP TABLE collate3t1;
  }
} {}

# Compare strings as numbers.
proc numeric_compare {lhs rhs} {
Changes to test/fuzz_malloc.test.
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#
# This file tests malloc failures in concert with fuzzy SQL generation.
#
# $Id: fuzz_malloc.test,v 1.9 2007/09/03 15:42:48 drh Exp $

set testdir [file dirname $argv0]
source $testdir/tester.tcl

ifcapable !memdebug {
  finish_test
  return







|







8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#
# This file tests malloc failures in concert with fuzzy SQL generation.
#
# $Id: fuzz_malloc.test,v 1.10 2008/08/20 16:35:10 drh Exp $

set testdir [file dirname $argv0]
source $testdir/tester.tcl

ifcapable !memdebug {
  finish_test
  return
52
53
54
55
56
57
58

59
60
61
62
63
64
65
  set ::prep $::fuzzyopts(-sqlprep)
  execsql $::prep
  set jj 0
  for {set ii 0} {$ii < $::fuzzyopts(-repeats)} {incr ii} {
    expr srand($jj)
    incr jj
    set ::sql [subst $::fuzzyopts(-template)]

    foreach {rc res} [catchsql "$::sql"] {}
    if {$rc==0} {
      do_malloc_test $testname-$ii -sqlbody $::sql -sqlprep $::prep
    } else {
      incr ii -1
    }
  }







>







52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
  set ::prep $::fuzzyopts(-sqlprep)
  execsql $::prep
  set jj 0
  for {set ii 0} {$ii < $::fuzzyopts(-repeats)} {incr ii} {
    expr srand($jj)
    incr jj
    set ::sql [subst $::fuzzyopts(-template)]
    # puts fuzyy-sql=\[$::sql\]; flush stdout
    foreach {rc res} [catchsql "$::sql"] {}
    if {$rc==0} {
      do_malloc_test $testname-$ii -sqlbody $::sql -sqlprep $::prep
    } else {
      incr ii -1
    }
  }
Changes to test/select5.test.
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this file is testing aggregate functions and the
# GROUP BY and HAVING clauses of SELECT statements.
#
# $Id: select5.test,v 1.18 2008/08/02 03:50:40 drh Exp $

set testdir [file dirname $argv0]
source $testdir/tester.tcl

# Build some test data
#
execsql {







|







8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this file is testing aggregate functions and the
# GROUP BY and HAVING clauses of SELECT statements.
#
# $Id: select5.test,v 1.19 2008/08/20 16:35:10 drh Exp $

set testdir [file dirname $argv0]
source $testdir/tester.tcl

# Build some test data
#
execsql {
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
    SELECT a, b FROM t2 GROUP BY a;
  } 
} {1 4 6 4}

# Test rendering of columns for the GROUP BY clause.
#
do_test select5-5.11 {
breakpoint
  execsql {
    SELECT max(c), b*a, b, a FROM t2 GROUP BY b*a, b, a
  }
} {3 2 2 1 5 4 4 1 7 24 4 6}

# NULL compare equal to each other for the purposes of processing
# the GROUP BY clause.







<







155
156
157
158
159
160
161

162
163
164
165
166
167
168
    SELECT a, b FROM t2 GROUP BY a;
  } 
} {1 4 6 4}

# Test rendering of columns for the GROUP BY clause.
#
do_test select5-5.11 {

  execsql {
    SELECT max(c), b*a, b, a FROM t2 GROUP BY b*a, b, a
  }
} {3 2 2 1 5 4 4 1 7 24 4 6}

# NULL compare equal to each other for the purposes of processing
# the GROUP BY clause.
Changes to test/select6.test.
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this file is testing SELECT statements that contain
# subqueries in their FROM clause.
#
# $Id: select6.test,v 1.27 2008/07/12 14:52:20 drh Exp $

set testdir [file dirname $argv0]
source $testdir/tester.tcl

# Omit this whole file if the library is build without subquery support.
ifcapable !subquery {
  finish_test







|







8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this file is testing SELECT statements that contain
# subqueries in their FROM clause.
#
# $Id: select6.test,v 1.28 2008/08/20 16:35:10 drh Exp $

set testdir [file dirname $argv0]
source $testdir/tester.tcl

# Omit this whole file if the library is build without subquery support.
ifcapable !subquery {
  finish_test
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
    WHERE a=b
    ORDER BY a
  }
} {8 5 8 9 6 9 10 7 10}

# Tests of compound sub-selects
#
do_test select5-6.1 {
  execsql {
    DELETE FROM t1 WHERE x>4;
    SELECT * FROM t1
  }
} {1 1 2 2 3 2 4 3}
ifcapable compound {
  do_test select6-6.2 {







|







296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
    WHERE a=b
    ORDER BY a
  }
} {8 5 8 9 6 9 10 7 10}

# Tests of compound sub-selects
#
do_test select6-6.1 {
  execsql {
    DELETE FROM t1 WHERE x>4;
    SELECT * FROM t1
  }
} {1 1 2 2 3 2 4 3}
ifcapable compound {
  do_test select6-6.2 {
Changes to test/tkt2822.test.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#
#***********************************************************************
#
# This file is to test that the issues surrounding expressions in
# ORDER BY clauses on compound SELECT statements raised by ticket
# #2822 have been dealt with.
#
# $Id: tkt2822.test,v 1.5 2008/08/04 03:51:24 danielk1977 Exp $
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

ifcapable !compound {
  finish_test







|







9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#
#***********************************************************************
#
# This file is to test that the issues surrounding expressions in
# ORDER BY clauses on compound SELECT statements raised by ticket
# #2822 have been dealt with.
#
# $Id: tkt2822.test,v 1.6 2008/08/20 16:35:10 drh Exp $
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

ifcapable !compound {
  finish_test
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
    SELECT t1.a, b, c FROM t1 UNION ALL SELECT t2.a, b, c FROM t2 ORDER BY t1.a;
  }
} {1 3 9 2 6 18 3 9 27 4 12 36 5 15 45 6 18 54}

# Test that if a match cannot be found in the leftmost SELECT, an
# attempt is made to find a match in subsequent SELECT statements.
#
do_test tkt2822-3.1 {
  execsql {
    SELECT a, b, c FROM t1 UNION ALL SELECT a AS x, b, c FROM t2 ORDER BY x;
  }
} {1 3 9 2 6 18 3 9 27 4 12 36 5 15 45 6 18 54}
do_test tkt2822-3.2 {
  # But the leftmost SELECT takes precedence.
  execsql {
    SELECT a AS b, CAST (b AS TEXT) AS a, c FROM t1 
      UNION ALL 
    SELECT a, b, c FROM t2 
      ORDER BY a;
  }
} {2 6 18 4 12 36 6 18 54 5 15 45 1 3 9 3 9 27}
do_test tkt2822-3.3 {
  execsql {
    SELECT a, b, c FROM t2 
      UNION ALL 
    SELECT a AS b, CAST (b AS TEXT) AS a, c FROM t1 
      ORDER BY a;
  }
} {1 3 9 2 6 18 3 9 27 4 12 36 5 15 45 6 18 54}







|




|








|







130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
    SELECT t1.a, b, c FROM t1 UNION ALL SELECT t2.a, b, c FROM t2 ORDER BY t1.a;
  }
} {1 3 9 2 6 18 3 9 27 4 12 36 5 15 45 6 18 54}

# Test that if a match cannot be found in the leftmost SELECT, an
# attempt is made to find a match in subsequent SELECT statements.
#
do_test tkt2822-3.3 {
  execsql {
    SELECT a, b, c FROM t1 UNION ALL SELECT a AS x, b, c FROM t2 ORDER BY x;
  }
} {1 3 9 2 6 18 3 9 27 4 12 36 5 15 45 6 18 54}
do_test tkt2822-3.4 {
  # But the leftmost SELECT takes precedence.
  execsql {
    SELECT a AS b, CAST (b AS TEXT) AS a, c FROM t1 
      UNION ALL 
    SELECT a, b, c FROM t2 
      ORDER BY a;
  }
} {2 6 18 4 12 36 6 18 54 5 15 45 1 3 9 3 9 27}
do_test tkt2822-3.5 {
  execsql {
    SELECT a, b, c FROM t2 
      UNION ALL 
    SELECT a AS b, CAST (b AS TEXT) AS a, c FROM t1 
      ORDER BY a;
  }
} {1 3 9 2 6 18 3 9 27 4 12 36 5 15 45 6 18 54}
Changes to tool/mksqlite3c.tcl.
242
243
244
245
246
247
248


249
250
251
252
253
254
255
   vdbemem.c
   vdbeaux.c
   vdbeapi.c
   vdbe.c
   vdbeblob.c
   journal.c



   expr.c
   alter.c
   analyze.c
   attach.c
   auth.c
   build.c
   callback.c







>
>







242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
   vdbemem.c
   vdbeaux.c
   vdbeapi.c
   vdbe.c
   vdbeblob.c
   journal.c

   walker.c
   resolve.c
   expr.c
   alter.c
   analyze.c
   attach.c
   auth.c
   build.c
   callback.c