Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Merge the latest 3.8.4 tweaks from trunk. |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | sessions |
Files: | files | file ages | folders |
SHA1: |
1ed463d91866182fbc884fb88770717e |
User & Date: | drh 2014-03-06 13:48:31.335 |
Context
2014-03-06
| ||
14:53 | Enhance the test harness for the sessions interface so that it does not use SQLite operations that can encounter an OOM error in places where it is unable to report an OOM error back up to the test script. (check-in: bc0e661033 user: drh tags: sessions) | |
13:48 | Merge the latest 3.8.4 tweaks from trunk. (check-in: 1ed463d918 user: drh tags: sessions) | |
13:38 | Improved EXPLAIN indentation of a loop in the ANALYZE logic for STAT4. Mark the not-found jump of a seek operation in that loop as never taken. (check-in: 0a4200f95c user: drh tags: trunk) | |
2014-03-05
| ||
23:12 | Merge compiler-warning fixes from trunk. (check-in: a1f2b04285 user: drh tags: sessions) | |
Changes
Changes to src/analyze.c.
︙ | ︙ | |||
1174 1175 1176 1177 1178 1179 1180 | callStatGet(v, regStat4, STAT_GET_ROWID, regSampleRowid); addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regSampleRowid); VdbeCoverage(v); callStatGet(v, regStat4, STAT_GET_NEQ, regEq); callStatGet(v, regStat4, STAT_GET_NLT, regLt); callStatGet(v, regStat4, STAT_GET_NDLT, regDLt); sqlite3VdbeAddOp4Int(v, seekOp, iTabCur, addrNext, regSampleRowid, 0); | > > > | | | 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 | callStatGet(v, regStat4, STAT_GET_ROWID, regSampleRowid); addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regSampleRowid); VdbeCoverage(v); callStatGet(v, regStat4, STAT_GET_NEQ, regEq); callStatGet(v, regStat4, STAT_GET_NLT, regLt); callStatGet(v, regStat4, STAT_GET_NDLT, regDLt); sqlite3VdbeAddOp4Int(v, seekOp, iTabCur, addrNext, regSampleRowid, 0); /* We know that the regSampleRowid row exists because it was read by ** the previous loop. Thus the not-found jump of seekOp will never ** be taken */ VdbeCoverageNeverTaken(v); #ifdef SQLITE_ENABLE_STAT3 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTabCur, pIdx->aiColumn[0], regSample); #else for(i=0; i<nCol; i++){ i16 iCol = pIdx->aiColumn[i]; sqlite3ExprCodeGetColumnOfTable(v, pTab, iTabCur, iCol, regCol+i); } sqlite3VdbeAddOp3(v, OP_MakeRecord, regCol, nCol+1, regSample); #endif sqlite3VdbeAddOp3(v, OP_MakeRecord, regTabname, 6, regTemp); sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regNewRowid); sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regTemp, regNewRowid); sqlite3VdbeAddOp2(v, OP_Goto, 1, addrNext); /* P1==1 for end-of-loop */ sqlite3VdbeJumpHere(v, addrIsNull); } #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ /* End of analysis */ sqlite3VdbeJumpHere(v, addrRewind); sqlite3DbFree(db, aGotoChng); |
︙ | ︙ |
Changes to src/btree.c.
︙ | ︙ | |||
4572 4573 4574 4575 4576 4577 4578 | if( pIdxKey ){ xRecordCompare = sqlite3VdbeFindCompare(pIdxKey); assert( pIdxKey->default_rc==1 || pIdxKey->default_rc==0 || pIdxKey->default_rc==-1 ); }else{ | | | 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 | if( pIdxKey ){ xRecordCompare = sqlite3VdbeFindCompare(pIdxKey); assert( pIdxKey->default_rc==1 || pIdxKey->default_rc==0 || pIdxKey->default_rc==-1 ); }else{ xRecordCompare = 0; /* All keys are integers */ } rc = moveToRoot(pCur); if( rc ){ return rc; } assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] ); |
︙ | ︙ |
Changes to src/insert.c.
︙ | ︙ | |||
97 98 99 100 101 102 103 | return pIdx->zColAff; } /* ** Compute the affinity string for table pTab, if it has not already been ** computed. As an optimization, omit trailing SQLITE_AFF_NONE affinities. ** | | | | 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 | return pIdx->zColAff; } /* ** Compute the affinity string for table pTab, if it has not already been ** computed. As an optimization, omit trailing SQLITE_AFF_NONE affinities. ** ** If the affinity exists (if it is no entirely SQLITE_AFF_NONE values) and ** if iReg>0 then code an OP_Affinity opcode that will set the affinities ** for register iReg and following. Or if affinities exists and iReg==0, ** then just set the P4 operand of the previous opcode (which should be ** an OP_MakeRecord) to the affinity string. ** ** A column affinity string has one character per column: ** ** Character Column affinity ** ------------------------------ ** 'a' TEXT ** 'b' NONE ** 'c' NUMERIC ** 'd' INTEGER |
︙ | ︙ | |||
144 145 146 147 148 149 150 | sqlite3VdbeChangeP4(v, -1, zColAff, i); } } } /* ** Return non-zero if the table pTab in database iDb or any of its indices | | < | | 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 | sqlite3VdbeChangeP4(v, -1, zColAff, i); } } } /* ** Return non-zero if the table pTab in database iDb or any of its indices ** have been opened at any point in the VDBE program. This is used to see if ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can ** run without using a temporary table for the results of the SELECT. */ static int readsTable(Parse *p, int iDb, Table *pTab){ Vdbe *v = sqlite3GetVdbe(p); int i; int iEnd = sqlite3VdbeCurrentAddr(v); #ifndef SQLITE_OMIT_VIRTUALTABLE VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0; |
︙ | ︙ |
Changes to src/os_win.c.
︙ | ︙ | |||
5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 | #ifndef SQLITE_OMIT_LOAD_EXTENSION /* ** Interfaces for opening a shared library, finding entry points ** within the shared library, and closing the shared library. */ static void *winDlOpen(sqlite3_vfs *pVfs, const char *zFilename){ HANDLE h; void *zConverted = winConvertFromUtf8Filename(zFilename); UNUSED_PARAMETER(pVfs); if( zConverted==0 ){ OSTRACE(("DLOPEN name=%s, handle=%p\n", zFilename, (void*)0)); return 0; } if( osIsNT() ){ #if SQLITE_OS_WINRT h = osLoadPackagedLibrary((LPCWSTR)zConverted, 0); | > > > > > > > > > > > > > > > > > | 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 | #ifndef SQLITE_OMIT_LOAD_EXTENSION /* ** Interfaces for opening a shared library, finding entry points ** within the shared library, and closing the shared library. */ static void *winDlOpen(sqlite3_vfs *pVfs, const char *zFilename){ HANDLE h; #if defined(__CYGWIN__) int nFull = pVfs->mxPathname+1; char *zFull = sqlite3MallocZero( nFull ); void *zConverted = 0; if( zFull==0 ){ OSTRACE(("DLOPEN name=%s, handle=%p\n", zFilename, (void*)0)); return 0; } if( winFullPathname(pVfs, zFilename, nFull, zFull)!=SQLITE_OK ){ sqlite3_free(zFull); OSTRACE(("DLOPEN name=%s, handle=%p\n", zFilename, (void*)0)); return 0; } zConverted = winConvertFromUtf8Filename(zFull); sqlite3_free(zFull); #else void *zConverted = winConvertFromUtf8Filename(zFilename); UNUSED_PARAMETER(pVfs); #endif if( zConverted==0 ){ OSTRACE(("DLOPEN name=%s, handle=%p\n", zFilename, (void*)0)); return 0; } if( osIsNT() ){ #if SQLITE_OS_WINRT h = osLoadPackagedLibrary((LPCWSTR)zConverted, 0); |
︙ | ︙ |
Changes to src/shell.c.
︙ | ︙ | |||
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 | ** * For each "Next", "Prev", "VNext" or "VPrev" instruction, indent ** all opcodes that occur between the p2 jump destination and the opcode ** itself by 2 spaces. ** ** * For each "Goto", if the jump destination is earlier in the program ** and ends on one of: ** Yield SeekGt SeekLt RowSetRead Rewind ** then indent all opcodes between the earlier instruction ** and "Goto" by 2 spaces. */ static void explain_data_prepare(struct callback_data *p, sqlite3_stmt *pSql){ const char *zSql; /* The text of the SQL statement */ const char *z; /* Used to check if this is an EXPLAIN */ int *abYield = 0; /* True if op is an OP_Yield */ | > | 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 | ** * For each "Next", "Prev", "VNext" or "VPrev" instruction, indent ** all opcodes that occur between the p2 jump destination and the opcode ** itself by 2 spaces. ** ** * For each "Goto", if the jump destination is earlier in the program ** and ends on one of: ** Yield SeekGt SeekLt RowSetRead Rewind ** or if the P1 parameter is one instead of zero, ** then indent all opcodes between the earlier instruction ** and "Goto" by 2 spaces. */ static void explain_data_prepare(struct callback_data *p, sqlite3_stmt *pSql){ const char *zSql; /* The text of the SQL statement */ const char *z; /* Used to check if this is an EXPLAIN */ int *abYield = 0; /* True if op is an OP_Yield */ |
︙ | ︙ | |||
1227 1228 1229 1230 1231 1232 1233 | abYield[iOp] = str_in_array(zOp, azYield); p->aiIndent[iOp] = 0; p->nIndent = iOp+1; if( str_in_array(zOp, azNext) ){ for(i=p2op; i<iOp; i++) p->aiIndent[i] += 2; } | | > > | 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 | abYield[iOp] = str_in_array(zOp, azYield); p->aiIndent[iOp] = 0; p->nIndent = iOp+1; if( str_in_array(zOp, azNext) ){ for(i=p2op; i<iOp; i++) p->aiIndent[i] += 2; } if( str_in_array(zOp, azGoto) && p2op<p->nIndent && (abYield[p2op] || sqlite3_column_int(pSql, 2)) ){ for(i=p2op+1; i<iOp; i++) p->aiIndent[i] += 2; } } p->iIndent = 0; sqlite3_free(abYield); sqlite3_reset(pSql); |
︙ | ︙ | |||
3813 3814 3815 3816 3817 3818 3819 | printf( "SQLite version %s %.19s\n" /*extra-version-info*/ "Enter \".help\" for usage hints.\n", sqlite3_libversion(), sqlite3_sourceid() ); if( warnInmemoryDb ){ printf("Connected to a "); | | | | 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 | printf( "SQLite version %s %.19s\n" /*extra-version-info*/ "Enter \".help\" for usage hints.\n", sqlite3_libversion(), sqlite3_sourceid() ); if( warnInmemoryDb ){ printf("Connected to a "); printBold("transient in-memory database"); printf(".\nUse \".open FILENAME\" to reopen on a " "persistent database.\n"); } zHome = find_home_dir(); if( zHome ){ nHistory = strlen30(zHome) + 20; if( (zHistory = malloc(nHistory))!=0 ){ sqlite3_snprintf(nHistory, zHistory,"%s/.sqlite_history", zHome); |
︙ | ︙ |
Changes to src/sqliteInt.h.
︙ | ︙ | |||
43 44 45 46 47 48 49 50 | # define _LARGE_FILE 1 # ifndef _FILE_OFFSET_BITS # define _FILE_OFFSET_BITS 64 # endif # define _LARGEFILE_SOURCE 1 #endif /* The public SQLite interface. The _FILE_OFFSET_BITS macro must appear | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > | 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 | # define _LARGE_FILE 1 # ifndef _FILE_OFFSET_BITS # define _FILE_OFFSET_BITS 64 # endif # define _LARGEFILE_SOURCE 1 #endif /* ** For MinGW, check to see if we can include the header file containing its ** version information, among other things. Normally, this internal MinGW ** header file would [only] be included automatically by other MinGW header ** files; however, the contained version information is now required by this ** header file to work around binary compatibility issues (see below) and ** this is the only known way to reliably obtain it. This entire #if block ** would be completely unnecessary if there was any other way of detecting ** MinGW via their preprocessor (e.g. if they customized their GCC to define ** some MinGW-specific macros). When compiling for MinGW, either the ** _HAVE_MINGW_H or _HAVE__MINGW_H (note the extra underscore) macro must be ** defined; otherwise, detection of conditions specific to MinGW will be ** disabled. */ #if defined(_HAVE_MINGW_H) # include "mingw.h" #elif defined(_HAVE__MINGW_H) # include "_mingw.h" #endif /* ** For MinGW version 4.x (and higher), check to see if the _USE_32BIT_TIME_T ** define is required to maintain binary compatibility with the MSVC runtime ** library in use (e.g. for Windows XP). */ #if !defined(_USE_32BIT_TIME_T) && !defined(_USE_64BIT_TIME_T) && \ defined(_WIN32) && !defined(_WIN64) && \ defined(__MINGW_MAJOR_VERSION) && __MINGW_MAJOR_VERSION >= 4 && \ defined(__MSVCRT__) # define _USE_32BIT_TIME_T #endif /* The public SQLite interface. The _FILE_OFFSET_BITS macro must appear ** first in QNX. Also, the _USE_32BIT_TIME_T macro must appear first for ** MinGW. */ #include "sqlite3.h" /* ** Include the configuration header output by 'configure' if we're using the ** autoconf-based build */ |
︙ | ︙ |
Changes to src/vdbe.c.
︙ | ︙ | |||
24 25 26 27 28 29 30 | /* ** Invoke this macro on memory cells just prior to changing the ** value of the cell. This macro verifies that shallow copies are ** not misused. A shallow copy of a string or blob just copies a ** pointer to the string or blob, not the content. If the original ** is changed while the copy is still in use, the string or blob might ** be changed out from under the copy. This macro verifies that nothing | | | 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 | /* ** Invoke this macro on memory cells just prior to changing the ** value of the cell. This macro verifies that shallow copies are ** not misused. A shallow copy of a string or blob just copies a ** pointer to the string or blob, not the content. If the original ** is changed while the copy is still in use, the string or blob might ** be changed out from under the copy. This macro verifies that nothing ** like that ever happens. */ #ifdef SQLITE_DEBUG # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M) #else # define memAboutToChange(P,M) #endif |
︙ | ︙ | |||
677 678 679 680 681 682 683 684 685 686 687 688 689 690 | /* Opcode: Goto * P2 * * * ** ** An unconditional jump to address P2. ** The next instruction executed will be ** the one at index P2 from the beginning of ** the program. */ case OP_Goto: { /* jump */ pc = pOp->p2 - 1; /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev, ** OP_VNext, OP_RowSetNext, or OP_SorterNext) all jump here upon ** completion. Check to see if sqlite3_interrupt() has been called | > > > > > | 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 | /* Opcode: Goto * P2 * * * ** ** An unconditional jump to address P2. ** The next instruction executed will be ** the one at index P2 from the beginning of ** the program. ** ** The P1 parameter is not actually used by this opcode. However, it ** is sometimes set to 1 instead of 0 as a hint to the command-line shell ** that this Goto is the bottom of a loop and that the lines from P2 down ** to the current line should be indented for EXPLAIN output. */ case OP_Goto: { /* jump */ pc = pOp->p2 - 1; /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev, ** OP_VNext, OP_RowSetNext, or OP_SorterNext) all jump here upon ** completion. Check to see if sqlite3_interrupt() has been called |
︙ | ︙ | |||
2172 2173 2174 2175 2176 2177 2178 | break; } /* Opcode: Once P1 P2 * * * ** ** Check if OP_Once flag P1 is set. If so, jump to instruction P2. Otherwise, ** set the flag and fall through to the next instruction. In other words, | | | | 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 | break; } /* Opcode: Once P1 P2 * * * ** ** Check if OP_Once flag P1 is set. If so, jump to instruction P2. Otherwise, ** set the flag and fall through to the next instruction. In other words, ** this opcode causes all following opcodes up through P2 (but not including ** P2) to run just once and to be skipped on subsequent times through the loop. */ case OP_Once: { /* jump */ assert( pOp->p1<p->nOnceFlag ); VdbeBranchTaken(p->aOnceFlag[pOp->p1]!=0, 2); if( p->aOnceFlag[pOp->p1] ){ pc = pOp->p2-1; }else{ |
︙ | ︙ |
Changes to src/vdbeaux.c.
︙ | ︙ | |||
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 | ** callgrind, this causes a certain test case to hit the CPU 4.7 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if ** sqlite3MemRelease() were called from here. With -O2, this jumps ** to 6.6 percent. The test case is inserting 1000 rows into a table ** with no indexes using a single prepared INSERT statement, bind() ** and reset(). Inserts are grouped into a transaction. */ if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){ sqlite3VdbeMemRelease(p); }else if( p->zMalloc ){ sqlite3DbFree(db, p->zMalloc); p->zMalloc = 0; } | > > > > | 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 | ** callgrind, this causes a certain test case to hit the CPU 4.7 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if ** sqlite3MemRelease() were called from here. With -O2, this jumps ** to 6.6 percent. The test case is inserting 1000 rows into a table ** with no indexes using a single prepared INSERT statement, bind() ** and reset(). Inserts are grouped into a transaction. */ testcase( p->flags & MEM_Agg ); testcase( p->flags & MEM_Dyn ); testcase( p->flags & MEM_Frame ); testcase( p->flags & MEM_RowSet ); if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){ sqlite3VdbeMemRelease(p); }else if( p->zMalloc ){ sqlite3DbFree(db, p->zMalloc); p->zMalloc = 0; } |
︙ | ︙ | |||
2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 | case 0: { /* NULL */ pMem->flags = MEM_Null; break; } case 1: { /* 1-byte signed integer */ pMem->u.i = ONE_BYTE_INT(buf); pMem->flags = MEM_Int; return 1; } case 2: { /* 2-byte signed integer */ pMem->u.i = TWO_BYTE_INT(buf); pMem->flags = MEM_Int; return 2; } case 3: { /* 3-byte signed integer */ pMem->u.i = THREE_BYTE_INT(buf); pMem->flags = MEM_Int; return 3; } case 4: { /* 4-byte signed integer */ y = FOUR_BYTE_UINT(buf); pMem->u.i = (i64)*(int*)&y; pMem->flags = MEM_Int; return 4; } case 5: { /* 6-byte signed integer */ pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf); pMem->flags = MEM_Int; return 6; } case 6: /* 8-byte signed integer */ case 7: { /* IEEE floating point */ #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) /* Verify that integers and floating point values use the same ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is | > > > > > | 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 | case 0: { /* NULL */ pMem->flags = MEM_Null; break; } case 1: { /* 1-byte signed integer */ pMem->u.i = ONE_BYTE_INT(buf); pMem->flags = MEM_Int; testcase( pMem->u.i<0 ); return 1; } case 2: { /* 2-byte signed integer */ pMem->u.i = TWO_BYTE_INT(buf); pMem->flags = MEM_Int; testcase( pMem->u.i<0 ); return 2; } case 3: { /* 3-byte signed integer */ pMem->u.i = THREE_BYTE_INT(buf); pMem->flags = MEM_Int; testcase( pMem->u.i<0 ); return 3; } case 4: { /* 4-byte signed integer */ y = FOUR_BYTE_UINT(buf); pMem->u.i = (i64)*(int*)&y; pMem->flags = MEM_Int; testcase( pMem->u.i<0 ); return 4; } case 5: { /* 6-byte signed integer */ pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf); pMem->flags = MEM_Int; testcase( pMem->u.i<0 ); return 6; } case 6: /* 8-byte signed integer */ case 7: { /* IEEE floating point */ #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) /* Verify that integers and floating point values use the same ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is |
︙ | ︙ | |||
3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 | #endif x = FOUR_BYTE_UINT(buf); y = FOUR_BYTE_UINT(buf+4); x = (x<<32) | y; if( serial_type==6 ){ pMem->u.i = *(i64*)&x; pMem->flags = MEM_Int; }else{ assert( sizeof(x)==8 && sizeof(pMem->r)==8 ); swapMixedEndianFloat(x); memcpy(&pMem->r, &x, sizeof(x)); pMem->flags = sqlite3IsNaN(pMem->r) ? MEM_Null : MEM_Real; } return 8; | > | 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 | #endif x = FOUR_BYTE_UINT(buf); y = FOUR_BYTE_UINT(buf+4); x = (x<<32) | y; if( serial_type==6 ){ pMem->u.i = *(i64*)&x; pMem->flags = MEM_Int; testcase( pMem->u.i<0 ); }else{ assert( sizeof(x)==8 && sizeof(pMem->r)==8 ); swapMixedEndianFloat(x); memcpy(&pMem->r, &x, sizeof(x)); pMem->flags = sqlite3IsNaN(pMem->r) ? MEM_Null : MEM_Real; } return 8; |
︙ | ︙ | |||
3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 | */ static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){ u32 y; assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) ); switch( serial_type ){ case 0: case 1: return ONE_BYTE_INT(aKey); case 2: return TWO_BYTE_INT(aKey); case 3: return THREE_BYTE_INT(aKey); case 4: { y = FOUR_BYTE_UINT(aKey); return (i64)*(int*)&y; } case 5: { return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); } case 6: { u64 x = FOUR_BYTE_UINT(aKey); x = (x<<32) | FOUR_BYTE_UINT(aKey+4); return (i64)*(i64*)&x; } } return (serial_type - 8); } | > > > > > > | 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 | */ static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){ u32 y; assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) ); switch( serial_type ){ case 0: case 1: testcase( aKey[0]&0x80 ); return ONE_BYTE_INT(aKey); case 2: testcase( aKey[0]&0x80 ); return TWO_BYTE_INT(aKey); case 3: testcase( aKey[0]&0x80 ); return THREE_BYTE_INT(aKey); case 4: { testcase( aKey[0]&0x80 ); y = FOUR_BYTE_UINT(aKey); return (i64)*(int*)&y; } case 5: { testcase( aKey[0]&0x80 ); return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); } case 6: { u64 x = FOUR_BYTE_UINT(aKey); testcase( aKey[0]&0x80 ); x = (x<<32) | FOUR_BYTE_UINT(aKey+4); return (i64)*(i64*)&x; } } return (serial_type - 8); } |
︙ | ︙ | |||
3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 | assert( idx1<=szHdr1 || CORRUPT_DB ); do{ u32 serial_type; /* RHS is an integer */ if( pRhs->flags & MEM_Int ){ serial_type = aKey1[idx1]; if( serial_type>=12 ){ rc = +1; }else if( serial_type==0 ){ rc = -1; }else if( serial_type==7 ){ double rhs = (double)pRhs->u.i; sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); | > | 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 | assert( idx1<=szHdr1 || CORRUPT_DB ); do{ u32 serial_type; /* RHS is an integer */ if( pRhs->flags & MEM_Int ){ serial_type = aKey1[idx1]; testcase( serial_type==12 ); if( serial_type>=12 ){ rc = +1; }else if( serial_type==0 ){ rc = -1; }else if( serial_type==7 ){ double rhs = (double)pRhs->u.i; sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); |
︙ | ︙ | |||
3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 | } } } /* RHS is a string */ else if( pRhs->flags & MEM_Str ){ getVarint32(&aKey1[idx1], serial_type); if( serial_type<12 ){ rc = -1; }else if( !(serial_type & 0x01) ){ rc = +1; }else{ mem1.n = (serial_type - 12) / 2; if( (d1+mem1.n) > (unsigned)nKey1 ){ rc = 1; /* Corruption */ }else if( pKeyInfo->aColl[i] ){ mem1.enc = pKeyInfo->enc; mem1.db = pKeyInfo->db; mem1.flags = MEM_Str; mem1.z = (char*)&aKey1[d1]; rc = vdbeCompareMemString(&mem1, pRhs, pKeyInfo->aColl[i]); }else{ int nCmp = MIN(mem1.n, pRhs->n); rc = memcmp(&aKey1[d1], pRhs->z, nCmp); if( rc==0 ) rc = mem1.n - pRhs->n; } } } /* RHS is a blob */ else if( pRhs->flags & MEM_Blob ){ getVarint32(&aKey1[idx1], serial_type); if( serial_type<12 || (serial_type & 0x01) ){ rc = -1; }else{ int nStr = (serial_type - 12) / 2; if( (d1+nStr) > (unsigned)nKey1 ){ rc = 1; /* Corruption */ }else{ int nCmp = MIN(nStr, pRhs->n); rc = memcmp(&aKey1[d1], pRhs->z, nCmp); if( rc==0 ) rc = nStr - pRhs->n; } | > > > > > > | 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 | } } } /* RHS is a string */ else if( pRhs->flags & MEM_Str ){ getVarint32(&aKey1[idx1], serial_type); testcase( serial_type==12 ); if( serial_type<12 ){ rc = -1; }else if( !(serial_type & 0x01) ){ rc = +1; }else{ mem1.n = (serial_type - 12) / 2; testcase( (d1+mem1.n)==(unsigned)nKey1 ); testcase( (d1+mem1.n+1)==(unsigned)nKey1 ); if( (d1+mem1.n) > (unsigned)nKey1 ){ rc = 1; /* Corruption */ }else if( pKeyInfo->aColl[i] ){ mem1.enc = pKeyInfo->enc; mem1.db = pKeyInfo->db; mem1.flags = MEM_Str; mem1.z = (char*)&aKey1[d1]; rc = vdbeCompareMemString(&mem1, pRhs, pKeyInfo->aColl[i]); }else{ int nCmp = MIN(mem1.n, pRhs->n); rc = memcmp(&aKey1[d1], pRhs->z, nCmp); if( rc==0 ) rc = mem1.n - pRhs->n; } } } /* RHS is a blob */ else if( pRhs->flags & MEM_Blob ){ getVarint32(&aKey1[idx1], serial_type); testcase( serial_type==12 ); if( serial_type<12 || (serial_type & 0x01) ){ rc = -1; }else{ int nStr = (serial_type - 12) / 2; testcase( (d1+nStr)==(unsigned)nKey1 ); testcase( (d1+nStr+1)==(unsigned)nKey1 ); if( (d1+nStr) > (unsigned)nKey1 ){ rc = 1; /* Corruption */ }else{ int nCmp = MIN(nStr, pRhs->n); rc = memcmp(&aKey1[d1], pRhs->z, nCmp); if( rc==0 ) rc = nStr - pRhs->n; } |
︙ | ︙ | |||
3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 | i64 lhs; UNUSED_PARAMETER(bSkip); assert( bSkip==0 ); switch( serial_type ){ case 1: { /* 1-byte signed integer */ lhs = ONE_BYTE_INT(aKey); break; } case 2: { /* 2-byte signed integer */ lhs = TWO_BYTE_INT(aKey); break; } case 3: { /* 3-byte signed integer */ lhs = THREE_BYTE_INT(aKey); break; } case 4: { /* 4-byte signed integer */ y = FOUR_BYTE_UINT(aKey); lhs = (i64)*(int*)&y; break; } case 5: { /* 6-byte signed integer */ lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); break; } case 6: { /* 8-byte signed integer */ x = FOUR_BYTE_UINT(aKey); x = (x<<32) | FOUR_BYTE_UINT(aKey+4); lhs = *(i64*)&x; break; } case 8: lhs = 0; break; case 9: lhs = 1; | > > > > > > | 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 | i64 lhs; UNUSED_PARAMETER(bSkip); assert( bSkip==0 ); switch( serial_type ){ case 1: { /* 1-byte signed integer */ lhs = ONE_BYTE_INT(aKey); testcase( lhs<0 ); break; } case 2: { /* 2-byte signed integer */ lhs = TWO_BYTE_INT(aKey); testcase( lhs<0 ); break; } case 3: { /* 3-byte signed integer */ lhs = THREE_BYTE_INT(aKey); testcase( lhs<0 ); break; } case 4: { /* 4-byte signed integer */ y = FOUR_BYTE_UINT(aKey); lhs = (i64)*(int*)&y; testcase( lhs<0 ); break; } case 5: { /* 6-byte signed integer */ lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); testcase( lhs<0 ); break; } case 6: { /* 8-byte signed integer */ x = FOUR_BYTE_UINT(aKey); x = (x<<32) | FOUR_BYTE_UINT(aKey+4); lhs = *(i64*)&x; testcase( lhs<0 ); break; } case 8: lhs = 0; break; case 9: lhs = 1; |
︙ | ︙ | |||
3740 3741 3742 3743 3744 3745 3746 | }else{ p->r1 = -1; p->r2 = 1; } if( (flags & MEM_Int) ){ return vdbeRecordCompareInt; } | | > > | < > | 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 | }else{ p->r1 = -1; p->r2 = 1; } if( (flags & MEM_Int) ){ return vdbeRecordCompareInt; } testcase( flags & MEM_Real ); testcase( flags & MEM_Null ); testcase( flags & MEM_Blob ); if( (flags & (MEM_Real|MEM_Null|MEM_Blob))==0 && p->pKeyInfo->aColl[0]==0 ){ assert( flags & MEM_Str ); return vdbeRecordCompareString; } } return sqlite3VdbeRecordCompare; } |
︙ | ︙ |
Changes to src/where.c.
︙ | ︙ | |||
3053 3054 3055 3056 3057 3058 3059 | pRangeStart = pLoop->aLTerm[j++]; nExtraReg = 1; } if( pLoop->wsFlags & WHERE_TOP_LIMIT ){ pRangeEnd = pLoop->aLTerm[j++]; nExtraReg = 1; if( pRangeStart==0 | < > | 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 | pRangeStart = pLoop->aLTerm[j++]; nExtraReg = 1; } if( pLoop->wsFlags & WHERE_TOP_LIMIT ){ pRangeEnd = pLoop->aLTerm[j++]; nExtraReg = 1; if( pRangeStart==0 && (j = pIdx->aiColumn[nEq])>=0 && pIdx->pTable->aCol[j].notNull==0 ){ bSeekPastNull = 1; } } assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 ); /* Generate code to evaluate all constraint terms using == or IN ** and store the values of those terms in an array of registers ** starting at regBase. */ regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff); assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq ); |
︙ | ︙ |