/ Check-in [79ad4ea2c8]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Merge the 3.32.0 release into the begin-concurrent branch.
Downloads: Tarball | ZIP archive | SQL archive
Timelines: family | ancestors | descendants | both | begin-concurrent
Files: files | file ages | folders
SHA3-256: 79ad4ea2c8e7f4c90983d78a9a6ebb6a70a057124d708076a0bbf0db8696cdaa
User & Date: drh 2020-05-22 18:09:51
Context
2020-05-25
17:27
Merge version 3.32.1 into the begin-concurrent branch. Leaf check-in: 5e08e36067 user: drh tags: begin-concurrent
2020-05-22
18:09
Merge the 3.32.0 release into the begin-concurrent branch. check-in: 79ad4ea2c8 user: drh tags: begin-concurrent
17:46
Version 3.32.0 check-in: 5998789c9c user: drh tags: trunk, release, version-3.32.0
2020-05-18
15:41
Merge latest trunk changes into this branch. check-in: 9e4a7b3ed8 user: dan tags: begin-concurrent
Changes
Hide Diffs Unified Diffs Ignore Whitespace Patch

Changes to Makefile.msc.

1252
1253
1254
1255
1256
1257
1258
1259

1260
1261
1262
1263
1264
1265
1266
         notify.lo opcodes.lo os.lo os_unix.lo os_win.lo \
         pager.lo pcache.lo pcache1.lo pragma.lo prepare.lo printf.lo \
         random.lo resolve.lo rowset.lo rtree.lo \
         sqlite3session.lo select.lo sqlite3rbu.lo status.lo stmt.lo \
         table.lo threads.lo tokenize.lo treeview.lo trigger.lo \
         update.lo upsert.lo util.lo vacuum.lo \
         vdbeapi.lo vdbeaux.lo vdbeblob.lo vdbemem.lo vdbesort.lo \
         vdbetrace.lo wal.lo walker.lo where.lo wherecode.lo whereexpr.lo \

         window.lo utf.lo vtab.lo
# <</mark>>

# Object files for the amalgamation.
#
LIBOBJS1 = sqlite3.lo








|
>







1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
         notify.lo opcodes.lo os.lo os_unix.lo os_win.lo \
         pager.lo pcache.lo pcache1.lo pragma.lo prepare.lo printf.lo \
         random.lo resolve.lo rowset.lo rtree.lo \
         sqlite3session.lo select.lo sqlite3rbu.lo status.lo stmt.lo \
         table.lo threads.lo tokenize.lo treeview.lo trigger.lo \
         update.lo upsert.lo util.lo vacuum.lo \
         vdbeapi.lo vdbeaux.lo vdbeblob.lo vdbemem.lo vdbesort.lo \
         vdbetrace.lo vdbevtab.lo wal.lo walker.lo where.lo wherecode.lo \
         whereexpr.lo \
         window.lo utf.lo vtab.lo
# <</mark>>

# Object files for the amalgamation.
#
LIBOBJS1 = sqlite3.lo

Changes to ext/expert/sqlite3expert.c.

1132
1133
1134
1135
1136
1137
1138
1139
1140

1141

1142
1143
1144
1145
1146
1147
1148
      int i;

      if( !zDetail ) continue;
      nDetail = STRLEN(zDetail);

      for(i=0; i<nDetail; i++){
        const char *zIdx = 0;
        if( memcmp(&zDetail[i], " USING INDEX ", 13)==0 ){
          zIdx = &zDetail[i+13];

        }else if( memcmp(&zDetail[i], " USING COVERING INDEX ", 22)==0 ){

          zIdx = &zDetail[i+22];
        }
        if( zIdx ){
          const char *zSql;
          int nIdx = 0;
          while( zIdx[nIdx]!='\0' && (zIdx[nIdx]!=' ' || zIdx[nIdx+1]!='(') ){
            nIdx++;







|

>
|
>







1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
      int i;

      if( !zDetail ) continue;
      nDetail = STRLEN(zDetail);

      for(i=0; i<nDetail; i++){
        const char *zIdx = 0;
        if( i+13<nDetail && memcmp(&zDetail[i], " USING INDEX ", 13)==0 ){
          zIdx = &zDetail[i+13];
        }else if( i+22<nDetail 
            && memcmp(&zDetail[i], " USING COVERING INDEX ", 22)==0 
        ){
          zIdx = &zDetail[i+22];
        }
        if( zIdx ){
          const char *zSql;
          int nIdx = 0;
          while( zIdx[nIdx]!='\0' && (zIdx[nIdx]!=' ' || zIdx[nIdx+1]!='(') ){
            nIdx++;

Changes to ext/icu/README.txt.

112
113
114
115
116
117
118

119
120
121
122
123
124
125
126

2  COMPILATION AND USAGE

  The easiest way to compile and use the ICU extension is to build
  and use it as a dynamically loadable SQLite extension. To do this
  using gcc on *nix:


    gcc -shared icu.c `icu-config --ldflags` -o libSqliteIcu.so

  You may need to add "-I" flags so that gcc can find sqlite3ext.h
  and sqlite3.h. The resulting shared lib, libSqliteIcu.so, may be
  loaded into sqlite in the same way as any other dynamically loadable
  extension.









>
|







112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

2  COMPILATION AND USAGE

  The easiest way to compile and use the ICU extension is to build
  and use it as a dynamically loadable SQLite extension. To do this
  using gcc on *nix:

    gcc -fPIC -shared icu.c `pkg-config --libs --cflags icu-uc icu-io` \
        -o libSqliteIcu.so

  You may need to add "-I" flags so that gcc can find sqlite3ext.h
  and sqlite3.h. The resulting shared lib, libSqliteIcu.so, may be
  loaded into sqlite in the same way as any other dynamically loadable
  extension.


Changes to src/memdb.c.

609
610
611
612
613
614
615
616
617
618

619
620
621
622
623
** This routine is called when the extension is loaded.
** Register the new VFS.
*/
int sqlite3MemdbInit(void){
  sqlite3_vfs *pLower = sqlite3_vfs_find(0);
  int sz = pLower->szOsFile;
  memdb_vfs.pAppData = pLower;
  /* In all known configurations of SQLite, the size of a default
  ** sqlite3_file is greater than the size of a memdb sqlite3_file.
  ** Should that ever change, remove the following NEVER() */

  if( NEVER(sz<sizeof(MemFile)) ) sz = sizeof(MemFile);
  memdb_vfs.szOsFile = sz;
  return sqlite3_vfs_register(&memdb_vfs, 0);
}
#endif /* SQLITE_ENABLE_DESERIALIZE */







|
|
|
>
|




609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
** This routine is called when the extension is loaded.
** Register the new VFS.
*/
int sqlite3MemdbInit(void){
  sqlite3_vfs *pLower = sqlite3_vfs_find(0);
  int sz = pLower->szOsFile;
  memdb_vfs.pAppData = pLower;
  /* The following conditional can only be true when compiled for
  ** Windows x86 and SQLITE_MAX_MMAP_SIZE=0.  We always leave
  ** it in, to be safe, but it is marked as NO_TEST since there
  ** is no way to reach it under most builds. */
  if( sz<sizeof(MemFile) ) sz = sizeof(MemFile); /*NO_TEST*/
  memdb_vfs.szOsFile = sz;
  return sqlite3_vfs_register(&memdb_vfs, 0);
}
#endif /* SQLITE_ENABLE_DESERIALIZE */

Changes to src/os_win.c.

5268
5269
5270
5271
5272
5273
5274

5275

5276
5277
5278
5279
5280
5281
5282
  sqlite3_free(zTmpname);
  pFile->pMethod = pAppData ? pAppData->pMethod : &winIoMethod;
  pFile->pVfs = pVfs;
  pFile->h = h;
  if( isReadonly ){
    pFile->ctrlFlags |= WINFILE_RDONLY;
  }

  if( sqlite3_uri_boolean(zName, "psow", SQLITE_POWERSAFE_OVERWRITE) ){

    pFile->ctrlFlags |= WINFILE_PSOW;
  }
  pFile->lastErrno = NO_ERROR;
  pFile->zPath = zName;
#if SQLITE_MAX_MMAP_SIZE>0
  pFile->hMap = NULL;
  pFile->pMapRegion = 0;







>
|
>







5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
  sqlite3_free(zTmpname);
  pFile->pMethod = pAppData ? pAppData->pMethod : &winIoMethod;
  pFile->pVfs = pVfs;
  pFile->h = h;
  if( isReadonly ){
    pFile->ctrlFlags |= WINFILE_RDONLY;
  }
  if( (flags & SQLITE_OPEN_MAIN_DB)
   && sqlite3_uri_boolean(zName, "psow", SQLITE_POWERSAFE_OVERWRITE) 
  ){
    pFile->ctrlFlags |= WINFILE_PSOW;
  }
  pFile->lastErrno = NO_ERROR;
  pFile->zPath = zName;
#if SQLITE_MAX_MMAP_SIZE>0
  pFile->hMap = NULL;
  pFile->pMapRegion = 0;

Changes to src/utf.c.

280
281
282
283
284
285
286

287
288
289
290
291
292
293
294
295
296
297
298







299
300
301
302
303
304
305
306
307

308
309
310
311
312
313
314
315
316
317
318
319







320
321
322
323
324
325
326
    assert( desiredEnc==SQLITE_UTF8 );
    if( pMem->enc==SQLITE_UTF16LE ){
      /* UTF-16 Little-endian -> UTF-8 */
      while( zIn<zTerm ){
        c = *(zIn++);
        c += (*(zIn++))<<8;
        if( c>=0xd800 && c<0xe000 ){

          if( c>=0xdc00 || zIn>=zTerm ){
            c = 0xfffd;
          }else{
            int c2 = *(zIn++);
            c2 += (*(zIn++))<<8;
            if( c2<0xdc00 || c2>=0xe000 ){
              zIn -= 2;
              c = 0xfffd;
            }else{
              c = ((c&0x3ff)<<10) + (c2&0x3ff) + 0x10000;
            }
          }







        }
        WRITE_UTF8(z, c);
      }
    }else{
      /* UTF-16 Big-endian -> UTF-8 */
      while( zIn<zTerm ){
        c = (*(zIn++))<<8;
        c += *(zIn++);
        if( c>=0xd800 && c<0xe000 ){

          if( c>=0xdc00 || zIn>=zTerm ){
            c = 0xfffd;
          }else{
            int c2 = (*(zIn++))<<8;
            c2 += *(zIn++);
            if( c2<0xdc00 || c2>=0xe000 ){
              zIn -= 2;
              c = 0xfffd;
            }else{
              c = ((c&0x3ff)<<10) + (c2&0x3ff) + 0x10000;
            }
          }







        }
        WRITE_UTF8(z, c);
      }
    }
    pMem->n = (int)(z - zOut);
  }
  *z = 0;







>












>
>
>
>
>
>
>









>












>
>
>
>
>
>
>







280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
    assert( desiredEnc==SQLITE_UTF8 );
    if( pMem->enc==SQLITE_UTF16LE ){
      /* UTF-16 Little-endian -> UTF-8 */
      while( zIn<zTerm ){
        c = *(zIn++);
        c += (*(zIn++))<<8;
        if( c>=0xd800 && c<0xe000 ){
#ifdef SQLITE_REPLACE_INVALID_UTF
          if( c>=0xdc00 || zIn>=zTerm ){
            c = 0xfffd;
          }else{
            int c2 = *(zIn++);
            c2 += (*(zIn++))<<8;
            if( c2<0xdc00 || c2>=0xe000 ){
              zIn -= 2;
              c = 0xfffd;
            }else{
              c = ((c&0x3ff)<<10) + (c2&0x3ff) + 0x10000;
            }
          }
#else
          if( zIn<zTerm ){
            int c2 = (*zIn++);
            c2 += ((*zIn++)<<8);
            c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10);
          }
#endif
        }
        WRITE_UTF8(z, c);
      }
    }else{
      /* UTF-16 Big-endian -> UTF-8 */
      while( zIn<zTerm ){
        c = (*(zIn++))<<8;
        c += *(zIn++);
        if( c>=0xd800 && c<0xe000 ){
#ifdef SQLITE_REPLACE_INVALID_UTF
          if( c>=0xdc00 || zIn>=zTerm ){
            c = 0xfffd;
          }else{
            int c2 = (*(zIn++))<<8;
            c2 += *(zIn++);
            if( c2<0xdc00 || c2>=0xe000 ){
              zIn -= 2;
              c = 0xfffd;
            }else{
              c = ((c&0x3ff)<<10) + (c2&0x3ff) + 0x10000;
            }
          }
#else
          if( zIn<zTerm ){
            int c2 = ((*zIn++)<<8);
            c2 += (*zIn++);
            c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10);
          }
#endif
        }
        WRITE_UTF8(z, c);
      }
    }
    pMem->n = (int)(z - zOut);
  }
  *z = 0;

Changes to src/wal.c.

687
688
689
690
691
692
693




694
695
696
697
698
699













700
701
702
703
704
705
706
707
708
709
710
711
712

713
714
715
716
717
718
719
....
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928

1929
1930
1931
1932
1933
1934
1935
....
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
....
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
....
3030
3031
3032
3033
3034
3035
3036

3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052

3053
3054
3055
3056
3057
3058
3059
    }while( aData<aEnd );
  }

  aOut[0] = s1;
  aOut[1] = s2;
}





static void walShmBarrier(Wal *pWal){
  if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
    sqlite3OsShmBarrier(pWal->pDbFd);
  }
}














/*
** Write the header information in pWal->hdr into the wal-index.
**
** The checksum on pWal->hdr is updated before it is written.
*/
static void walIndexWriteHdr(Wal *pWal){
  volatile WalIndexHdr *aHdr = walIndexHdr(pWal);
  const int nCksum = offsetof(WalIndexHdr, aCksum);

  assert( pWal->writeLock );
  pWal->hdr.isInit = 1;
  pWal->hdr.iVersion = WALINDEX_MAX_VERSION;
  walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);

  memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
  walShmBarrier(pWal);
  memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
}

/*
** This function encodes a single frame header and writes it to a buffer
................................................................................
    ** safe to write into the database.  Frames beyond mxSafeFrame might
    ** overwrite database pages that are in use by active readers and thus
    ** cannot be backfilled from the WAL.
    */
    mxSafeFrame = pWal->hdr.mxFrame;
    mxPage = pWal->hdr.nPage;
    for(i=1; i<WAL_NREADER; i++){
      /* Thread-sanitizer reports that the following is an unsafe read,
      ** as some other thread may be in the process of updating the value
      ** of the aReadMark[] slot. The assumption here is that if that is
      ** happening, the other client may only be increasing the value,
      ** not decreasing it. So assuming either that either the "old" or
      ** "new" version of the value is read, and not some arbitrary value
      ** that would never be written by a real client, things are still 
      ** safe.
      **
      ** Astute readers have pointed out that the assumption stated in the
      ** last sentence of the previous paragraph is not guaranteed to be
      ** true for all conforming systems.  However, the assumption is true
      ** for all compilers and architectures in common use today (circa
      ** 2019-11-27) and the alternatives are both slow and complex, and
      ** so we will continue to go with the current design for now.  If this
      ** bothers you, or if you really are running on a system where aligned
      ** 32-bit reads and writes are not atomic, then you can simply avoid
      ** the use of WAL mode, or only use WAL mode together with
      ** PRAGMA locking_mode=EXCLUSIVE and all will be well.
      */
      u32 y = pInfo->aReadMark[i];
      if( mxSafeFrame>y ){
        assert( y<=pWal->hdr.mxFrame );
        rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1);
        if( rc==SQLITE_OK ){
          pInfo->aReadMark[i] = (i==1 ? mxSafeFrame : READMARK_NOT_USED);

          walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
        }else if( rc==SQLITE_BUSY ){
          mxSafeFrame = y;
          xBusy = 0;
        }else{
          goto walcheckpoint_out;
        }
................................................................................
    /* Allocate the iterator */
    if( pInfo->nBackfill<mxSafeFrame ){
      rc = walIteratorInit(pWal, pInfo->nBackfill, &pIter);
      assert( rc==SQLITE_OK || pIter==0 );
    }

    if( pIter
     && (rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(0),1))==SQLITE_OK
    ){
      u32 nBackfill = pInfo->nBackfill;

      pInfo->nBackfillAttempted = mxSafeFrame;

      /* Sync the WAL to disk */
      rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags));
................................................................................
** If and only if the read is consistent and the header is different from
** pWal->hdr, then pWal->hdr is updated to the content of the new header
** and *pChanged is set to 1.
**
** If the checksum cannot be verified return non-zero. If the header
** is read successfully and the checksum verified, return zero.
*/
static int walIndexTryHdr(Wal *pWal, int *pChanged){
  WalIndexHdr h1;                 /* Copy of the header content */

  if( walIndexLoadHdr(pWal, &h1) ){
    return 1;
  }

  if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
................................................................................
  */
  iMinHash = walFramePage(pWal->minFrame);
  for(iHash=walFramePage(iLast); iHash>=iMinHash; iHash--){
    WalHashLoc sLoc;              /* Hash table location */
    int iKey;                     /* Hash slot index */
    int nCollide;                 /* Number of hash collisions remaining */
    int rc;                       /* Error code */


    rc = walHashGet(pWal, iHash, &sLoc);
    if( rc!=SQLITE_OK ){
      return rc;
    }
    nCollide = HASHTABLE_NSLOT;
    for(iKey=walHash(pgno); sLoc.aHash[iKey]; iKey=walNextHash(iKey)){
      u32 iH = sLoc.aHash[iKey];
      u32 iFrame = iH + sLoc.iZero;
      if( iFrame<=iLast && iFrame>=pWal->minFrame && sLoc.aPgno[iH]==pgno ){
        assert( iFrame>iRead || CORRUPT_DB );
        iRead = iFrame;
      }
      if( (nCollide--)==0 ){
        return SQLITE_CORRUPT_BKPT;
      }

    }
    if( iRead ) break;
  }

#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
  /* If expensive assert() statements are available, do a linear search
  ** of the wal-index file content. Make sure the results agree with the







>
>
>
>






>
>
>
>
>
>
>
>
>
>
>
>
>





|







>







 







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|




|
>







 







|







 







|







 







>






|
|








>







687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
....
1914
1915
1916
1917
1918
1919
1920




















1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
....
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
....
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
....
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
    }while( aData<aEnd );
  }

  aOut[0] = s1;
  aOut[1] = s2;
}

/*
** If there is the possibility of concurrent access to the SHM file
** from multiple threads and/or processes, then do a memory barrier.
*/
static void walShmBarrier(Wal *pWal){
  if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
    sqlite3OsShmBarrier(pWal->pDbFd);
  }
}

/*
** Add the SQLITE_NO_TSAN as part of the return-type of a function
** definition as a hint that the function contains constructs that
** might give false-positive TSAN warnings.
**
** See tag-20200519-1.
*/
#if defined(__clang__) && !defined(SQLITE_NO_TSAN)
# define SQLITE_NO_TSAN __attribute__((no_sanitize_thread))
#else
# define SQLITE_NO_TSAN
#endif

/*
** Write the header information in pWal->hdr into the wal-index.
**
** The checksum on pWal->hdr is updated before it is written.
*/
static SQLITE_NO_TSAN void walIndexWriteHdr(Wal *pWal){
  volatile WalIndexHdr *aHdr = walIndexHdr(pWal);
  const int nCksum = offsetof(WalIndexHdr, aCksum);

  assert( pWal->writeLock );
  pWal->hdr.isInit = 1;
  pWal->hdr.iVersion = WALINDEX_MAX_VERSION;
  walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);
  /* Possible TSAN false-positive.  See tag-20200519-1 */
  memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
  walShmBarrier(pWal);
  memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
}

/*
** This function encodes a single frame header and writes it to a buffer
................................................................................
    ** safe to write into the database.  Frames beyond mxSafeFrame might
    ** overwrite database pages that are in use by active readers and thus
    ** cannot be backfilled from the WAL.
    */
    mxSafeFrame = pWal->hdr.mxFrame;
    mxPage = pWal->hdr.nPage;
    for(i=1; i<WAL_NREADER; i++){




















      u32 y = AtomicLoad(pInfo->aReadMark+i);
      if( mxSafeFrame>y ){
        assert( y<=pWal->hdr.mxFrame );
        rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1);
        if( rc==SQLITE_OK ){
          u32 iMark = (i==1 ? mxSafeFrame : READMARK_NOT_USED);
          AtomicStore(pInfo->aReadMark+i, iMark);
          walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
        }else if( rc==SQLITE_BUSY ){
          mxSafeFrame = y;
          xBusy = 0;
        }else{
          goto walcheckpoint_out;
        }
................................................................................
    /* Allocate the iterator */
    if( pInfo->nBackfill<mxSafeFrame ){
      rc = walIteratorInit(pWal, pInfo->nBackfill, &pIter);
      assert( rc==SQLITE_OK || pIter==0 );
    }

    if( pIter
     && (rc = walBusyLock(pWal,xBusy,pBusyArg,WAL_READ_LOCK(0),1))==SQLITE_OK
    ){
      u32 nBackfill = pInfo->nBackfill;

      pInfo->nBackfillAttempted = mxSafeFrame;

      /* Sync the WAL to disk */
      rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags));
................................................................................
** If and only if the read is consistent and the header is different from
** pWal->hdr, then pWal->hdr is updated to the content of the new header
** and *pChanged is set to 1.
**
** If the checksum cannot be verified return non-zero. If the header
** is read successfully and the checksum verified, return zero.
*/
static SQLITE_NO_TSAN int walIndexTryHdr(Wal *pWal, int *pChanged){
  WalIndexHdr h1;                 /* Copy of the header content */

  if( walIndexLoadHdr(pWal, &h1) ){
    return 1;
  }

  if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
................................................................................
  */
  iMinHash = walFramePage(pWal->minFrame);
  for(iHash=walFramePage(iLast); iHash>=iMinHash; iHash--){
    WalHashLoc sLoc;              /* Hash table location */
    int iKey;                     /* Hash slot index */
    int nCollide;                 /* Number of hash collisions remaining */
    int rc;                       /* Error code */
    u32 iH;

    rc = walHashGet(pWal, iHash, &sLoc);
    if( rc!=SQLITE_OK ){
      return rc;
    }
    nCollide = HASHTABLE_NSLOT;
    iKey = walHash(pgno);
    while( (iH = AtomicLoad(&sLoc.aHash[iKey]))!=0 ){
      u32 iFrame = iH + sLoc.iZero;
      if( iFrame<=iLast && iFrame>=pWal->minFrame && sLoc.aPgno[iH]==pgno ){
        assert( iFrame>iRead || CORRUPT_DB );
        iRead = iFrame;
      }
      if( (nCollide--)==0 ){
        return SQLITE_CORRUPT_BKPT;
      }
      iKey = walNextHash(iKey);
    }
    if( iRead ) break;
  }

#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
  /* If expensive assert() statements are available, do a linear search
  ** of the wal-index file content. Make sure the results agree with the

Changes to test/tkt-3fe897352e.test.

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
  sqlite3 db :memory:
  db eval {
    PRAGMA encoding=UTF8;
    CREATE TABLE t1(x);
    INSERT INTO t1 VALUES(hex_to_utf16be('D800'));
    SELECT hex(x) FROM t1;
  }
} {EFBFBD}
do_test tkt-3fe89-1.2 {
  db eval {
    DELETE FROM t1;
    INSERT INTO t1 VALUES(hex_to_utf16le('00D8'));
    SELECT hex(x) FROM t1;
  }
} {EFBFBD}
do_test tkt-3fe89-1.3 {
  db eval {
    DELETE FROM t1;
    INSERT INTO t1 VALUES(hex_to_utf16be('DFFF'));
    SELECT hex(x) FROM t1;
  }
} {EFBFBD}
do_test tkt-3fe89-1.4 {
  db eval {
    DELETE FROM t1;
    INSERT INTO t1 VALUES(hex_to_utf16le('FFDF'));
    SELECT hex(x) FROM t1;
  }
} {EFBFBD}


finish_test







|






|






|






|



29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
  sqlite3 db :memory:
  db eval {
    PRAGMA encoding=UTF8;
    CREATE TABLE t1(x);
    INSERT INTO t1 VALUES(hex_to_utf16be('D800'));
    SELECT hex(x) FROM t1;
  }
} {EDA080}
do_test tkt-3fe89-1.2 {
  db eval {
    DELETE FROM t1;
    INSERT INTO t1 VALUES(hex_to_utf16le('00D8'));
    SELECT hex(x) FROM t1;
  }
} {EDA080}
do_test tkt-3fe89-1.3 {
  db eval {
    DELETE FROM t1;
    INSERT INTO t1 VALUES(hex_to_utf16be('DFFF'));
    SELECT hex(x) FROM t1;
  }
} {EDBFBF}
do_test tkt-3fe89-1.4 {
  db eval {
    DELETE FROM t1;
    INSERT INTO t1 VALUES(hex_to_utf16le('FFDF'));
    SELECT hex(x) FROM t1;
  }
} {EDBFBF}


finish_test